Pregunta
upstudy study bank question image url

a. Rewrite the given equation \( 5 x+7 y-35=0 \) slope-intercept form. b. Give the slope and \( y \)-intercept. c. Use the slope and \( y \)-intercept to graph the linear function. a. The slope-intercept form of the equation is (Simplify your answer. Use integers or fractions for any numbers in the equation.)

Ask by Ball Phillips. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a. Slope-Intercept Form:** \[ y = -\frac{5}{7}x + 5 \] **b. Slope and \( y \)-intercept:** - **Slope (\( m \))**: \( -\frac{5}{7} \) - **\( y \)-intercept (\( b \))**: 5 **c. Graph:** Plot the point \( (0, 5) \) and another point using the slope \( -\frac{5}{7} \) (e.g., \( (7, 0) \)), then draw a straight line through these points.

Solución

Sure, let's work through each part of the problem step by step. ### **a. Rewrite the equation in slope-intercept form.** **Given Equation:** \[ 5x + 7y - 35 = 0 \] **Slope-Intercept Form:** The slope-intercept form of a linear equation is: \[ y = mx + b \] where: - \( m \) is the slope - \( b \) is the y-intercept **Steps to Rewrite:** 1. **Isolate the \( y \)-term:** \[ 7y = -5x + 35 \] 2. **Solve for \( y \):** \[ y = \frac{-5}{7}x + 5 \] **Final Slope-Intercept Form:** \[ y = -\frac{5}{7}x + 5 \] --- ### **b. Identify the slope and \( y \)-intercept.** From the slope-intercept form: \[ y = -\frac{5}{7}x + 5 \] - **Slope (\( m \))**: \[ m = -\frac{5}{7} \] - **\( y \)-intercept (\( b \))**: \[ b = 5 \] This means the line crosses the \( y \)-axis at the point \( (0, 5) \). --- ### **c. Graph the linear function using the slope and \( y \)-intercept.** **Steps to Graph:** 1. **Plot the \( y \)-intercept:** - Start by plotting the point \( (0, 5) \) on the graph. 2. **Use the slope to find another point:** - The slope \( m = -\frac{5}{7} \) can be interpreted as "rise over run." - **Rise:** -5 (since the slope is negative, move down) - **Run:** 7 (move to the right) Starting from \( (0, 5) \): - Move right 7 units to \( x = 7 \). - Move down 5 units to \( y = 0 \). - Plot the second point at \( (7, 0) \). 3. **Draw the line:** - Connect the two points \( (0, 5) \) and \( (7, 0) \) with a straight line. - Extend the line across the graph in both directions. **Graph Illustration:** ``` y | 5 | * (0,5) | 4 | | 3 | | 2 | | 1 | | 0 |-------------------------- x 0 7 ``` - The asterisk (*) represents the \( y \)-intercept at \( (0, 5) \). - The point at \( (7, 0) \) is also plotted. - Draw a straight line through these points to represent the linear function \( y = -\frac{5}{7}x + 5 \). --- This completes all parts of the problem. You can use graphing paper or a graphing tool to visualize the line accurately.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To rewrite the equation \( 5x + 7y - 35 = 0 \) in slope-intercept form (which is \( y = mx + b \)), you first solve for \( y \): 1. Move \( 5x \) to the other side: \( 7y = -5x + 35 \) 2. Divide each term by 7 to isolate \( y \): \( y = -\frac{5}{7}x + 5 \) So, the slope-intercept form of the equation is \( y = -\frac{5}{7}x + 5 \). The slope \( m \) is \( -\frac{5}{7} \), and the \( y \)-intercept \( b \) is \( 5 \). To graph the linear function, start at the \( y \)-intercept (0, 5) on the \( y \)-axis. From there, use the slope \( -\frac{5}{7} \) to find another point: move down 5 units and right 7 units to plot the point (7, 0). Draw a straight line through these points to complete the graph.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad