Pregunta
upstudy study bank question image url

A student scored \( x \) points on his first test and \( y \) points on his second test. Since he did not do very well on the first one, he studied very hard for the second test. The increase in his score, \( y-x \), was 26 points. His average for the two tests, \( \frac{x+y}{2} \), was 68 points. What did he score on the first test? \( x= \)

Ask by Williams Harmon. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = 55 \)

Solución

To determine the score \( x \) on the first test, let's set up and solve the given equations step by step. 1. **Understanding the Problem:** - **First Test Score:** \( x \) - **Second Test Score:** \( y \) - **Increase in Score:** \( y - x = 26 \) points - **Average of Two Tests:** \( \frac{x + y}{2} = 68 \) points 2. **Setting Up the Equations:** - From the increase in score: \[ y = x + 26 \quad \text{(Equation 1)} \] - From the average score: \[ \frac{x + y}{2} = 68 \] Multiply both sides by 2 to eliminate the denominator: \[ x + y = 136 \quad \text{(Equation 2)} \] 3. **Substituting Equation 1 into Equation 2:** \[ x + (x + 26) = 136 \] Simplify: \[ 2x + 26 = 136 \] Subtract 26 from both sides: \[ 2x = 110 \] Divide by 2: \[ x = 55 \] 4. **Conclusion:** The student scored **55 points** on the first test. **Answer:** \( x = 55 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's break down the problem step-by-step using the given information. 1. We know that \( y - x = 26 \). This means his score on the second test is 26 points higher than his first test. 2. We also know that the average score of both tests is 68. This can be expressed as: \[ \frac{x + y}{2} = 68 \] Multiplying both sides by 2, we get: \[ x + y = 136 \] Now we have a system of two equations: 1. \( y - x = 26 \) 2. \( x + y = 136 \) We can solve for \( y \) in terms of \( x \) from the first equation: \[ y = x + 26 \] Now, we substitute \( y \) in the second equation: \[ x + (x + 26) = 136 \] \[ 2x + 26 = 136 \] \[ 2x = 136 - 26 \] \[ 2x = 110 \] \[ x = 55 \] So, the student scored \( x = 55 \) points on his first test. To find \( y \), we can substitute this value back into the equation for \( y \): \[ y = 55 + 26 = 81 \] Thus, the student scored 55 points on the first test and 81 points on the second test.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad