Pregunta

\( \left\{\begin{array}{l}a+b+c=1 \\a>-\frac{1}{4} \\b>-\frac{1}{4} \\c>-\frac{1}{4} \\\sqrt {4a+1}+\sqrt {4b+1}+\sqrt {4c+1}<5\end{array}\right. \)

Ask by Martinez Carrillo. in Iran
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution set includes all values of \( a, b, c \) that satisfy: 1. \( a + b + c = 1 \) 2. \( a, b, c > -\frac{1}{4} \) 3. \( \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{4c + 1} < 5 \) These conditions define a region in three-dimensional space where the sum of \( a, b, c \) is 1, and each variable is greater than \( -\frac{1}{4} \), with the sum of their square roots being less than 5.

Solución

Let's break down the problem step by step. We have the following system of equations and inequalities: 1. \( a + b + c = 1 \) 2. \( a > -\frac{1}{4} \) 3. \( b > -\frac{1}{4} \) 4. \( c > -\frac{1}{4} \) 5. \( \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{4c + 1} < 5 \) ### Step 1: Analyze the first equation From the first equation, we can express one variable in terms of the others. Let's express \( c \): \[ c = 1 - a - b \] ### Step 2: Substitute into the inequality Now, we substitute \( c \) into the inequality: \[ \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{4(1 - a - b) + 1} < 5 \] This simplifies to: \[ \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{4 - 4a - 4b + 1} < 5 \] \[ \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{5 - 4a - 4b} < 5 \] ### Step 3: Define new variables Let \( x = \sqrt{4a + 1} \), \( y = \sqrt{4b + 1} \), and \( z = \sqrt{5 - 4a - 4b} \). From these definitions, we can express \( a \) and \( b \) in terms of \( x \) and \( y \): \[ a = \frac{x^2 - 1}{4}, \quad b = \frac{y^2 - 1}{4} \] Substituting these into the equation for \( c \): \[ c = 1 - \frac{x^2 - 1}{4} - \frac{y^2 - 1}{4} = 1 - \frac{x^2 + y^2 - 2}{4} = \frac{6 - x^2 - y^2}{4} \] ### Step 4: Substitute back into the inequality Now we need to ensure that: \[ x + y + \sqrt{5 - 4\left(\frac{x^2 - 1}{4} + \frac{y^2 - 1}{4}\right)} < 5 \] This simplifies to: \[ x + y + \sqrt{5 - (x^2 + y^2 - 2)} < 5 \] \[ x + y + \sqrt{7 - x^2 - y^2} < 5 \] ### Step 5: Solve the inequality To solve this inequality, we can analyze the possible values of \( x \) and \( y \) under the constraints \( a, b, c > -\frac{1}{4} \). 1. Since \( a > -\frac{1}{4} \), we have \( \sqrt{4a + 1} > 0 \) which implies \( x > 0 \). 2. Similarly, \( y > 0 \). 3. The maximum value of \( x + y \) occurs when \( z \) is minimized. ### Step 6: Find the bounds To find the bounds for \( x + y \), we can set \( z = 0 \): \[ x + y < 5 \] This gives us a region in the \( xy \)-plane where \( x + y < 5 \) and both \( x, y > 0 \). ### Conclusion The solution set consists of all \( (a, b, c) \) such that: - \( a + b + c = 1 \) - \( a, b, c > -\frac{1}{4} \) - \( \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{4c + 1} < 5 \) This defines a region in three-dimensional space, bounded by the conditions above. The exact values of \( a, b, c \) can be found by testing values within these constraints.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To analyze the given system of inequalities, let's first rewrite the equations. We have three variables \(a\), \(b\), and \(c\) with constraints based on their sum and individual lower bounds. 1. The linear constraint is \(a + b + c = 1\). 2. The individual lower bounds \(a > -\frac{1}{4}\), \(b > -\frac{1}{4}\), and \(c > -\frac{1}{4}\) ensure that none of the variables can go below \(-\frac{1}{4}\). 3. Finally, the inequality involving square roots is \(\sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{4c + 1} < 5\). Let's examine the last condition. Rewriting it reveals that each square root term must be carefully evaluated since they are rooted in the expressions of \(a\), \(b\), and \(c\). Given the equation \(a + b + c = 1\), you can express \(c\) in terms of \(a\) and \(b\): \[ c = 1 - a - b. \] Substituting this into the square root inequality gives: \[ \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{4(1 - a - b) + 1} < 5. \] This simplifies further to: \[ \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{5 - 4a - 4b} < 5. \] To solve this, we can utilize the Cauchy-Schwarz inequality, focusing on the left-hand side: \[ (\sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{5 - 4a - 4b})^2 \leq (1^2 + 1^2 + 1^2)((4a + 1) + (4b + 1) + (5 - 4a - 4b)). \] Calculating the sum: \[ (4a + 1) + (4b + 1) + (5 - 4a - 4b) = 7. \] This gives us: \[ 3 \cdot ((4a + 1) + (4b + 1) + (5 - 4a - 4b)) = 3 \cdot 7 = 21. \] Then, \[ (\sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{5 - 4a - 4b})^2 < 25, \] implying that: \[ \sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{5 - 4a - 4b} < 5. \] The values of \(a\), \(b\), and \(c\) can be optimized under the given conditions. Testing values such as: - Let \(a = b = c = \frac{1}{3}\): this easily satisfies the condition \(a + b + c = 1\), and all individual bounds, and also: \[ \sqrt{4(\frac{1}{3}) + 1} + \sqrt{4(\frac{1}{3}) + 1} + \sqrt{4(\frac{1}{3}) + 1} = 3\sqrt{\frac{7}{3}} < 5, \] definitely works. In essence, we can conclude that there are solutions for the variables \(a\), \(b\), and \(c\) that satisfy the given inequalities, both within bounds and under square root constraints.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad