Pregunta

The population of a certain species in a protected area can be modeled by the function \( P(t) = 200 + 50 \sin(t) \), where \( t \) is measured in years. Determine the total population increase over one complete cycle (from \( t=0 \) to \( t=2\pi \)).

Ask by Fitzgerald Hobbs. in Ethiopia
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The population increase over one complete cycle is 0.

Solución

To determine the total population increase over one complete cycle of the function \( P(t) = 200 + 50 \sin(t) \) from \( t=0 \) to \( t=2\pi \), we will follow these steps: 1. **Evaluate the population at the start and end of the cycle**: - Calculate \( P(0) \). - Calculate \( P(2\pi) \). 2. **Find the total population increase**: - Subtract the initial population from the final population. Let's start with the calculations. ### Step 1: Evaluate the population at \( t=0 \) and \( t=2\pi \) 1. Calculate \( P(0) \): \[ P(0) = 200 + 50 \sin(0) = 200 + 50 \cdot 0 = 200 \] 2. Calculate \( P(2\pi) \): \[ P(2\pi) = 200 + 50 \sin(2\pi) = 200 + 50 \cdot 0 = 200 \] ### Step 2: Find the total population increase Now, we find the total population increase over the cycle: \[ \text{Total Increase} = P(2\pi) - P(0) = 200 - 200 = 0 \] ### Conclusion The total population increase over one complete cycle from \( t=0 \) to \( t=2\pi \) is \( 0 \). This means that the population returns to its original value after one complete cycle.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the total population increase over one complete cycle from \( t=0 \) to \( t=2\pi \), we need to calculate the population at the beginning and the end of the cycle. 1. **At \( t=0 \)**: \[ P(0) = 200 + 50 \sin(0) = 200 + 50 \cdot 0 = 200 \] 2. **At \( t=2\pi \)**: \[ P(2\pi) = 200 + 50 \sin(2\pi) = 200 + 50 \cdot 0 = 200 \] Now, we calculate the total population increase over one complete cycle: \[ \text{Population Increase} = P(2\pi) - P(0) = 200 - 200 = 0 \] Thus, the total population increase over one complete cycle is **0**. Now, here's some additional fun information! The sine function, as part of our population model, dances between -1 and 1. This means during its peak, the population reaches 250, while in its trough, it dips to 150, illustrating nature's ebb and flow. Talk about a wild rollercoaster ride of numbers! In real-world scenarios, such population functions can help biologists assess species' health in conservation areas. By understanding population dynamics, conservation efforts can be tailored effectively, ensuring that the ups and downs of species populations are managed for sustainability!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad