Match the inequality on the left with the solution on the right. \( \begin{array}{l}6 x-2+6 x \geq-14 \\ \text { [Choose] } \\ -1-2(4 x+6) \leq-37 \\ \text { [Choose] } \\ \text { [Choose] } \\ \text { [Choose] } \\ 8+2 x / 3 \leq 12\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let's solve each inequality step by step and prepare the solutions. 1. **For the inequality \( 6x - 2 + 6x \geq -14 \):** - Combine like terms: \( 12x - 2 \geq -14 \) - Add 2 to both sides: \( 12x \geq -12 \) - Divide by 12: \( x \geq -1 \) 2. **For the inequality \( -1 - 2(4x + 6) \leq -37 \):** - Distribute -2: \( -1 - 8x - 12 \leq -37 \) - Combine like terms: \( -8x - 13 \leq -37 \) - Add 13 to both sides: \( -8x \leq -24 \) - Divide by -8 (and flip the inequality): \( x \geq 3 \) 3. **For the inequality \( 8 + \frac{2x}{3} \leq 12 \):** - Subtract 8: \( \frac{2x}{3} \leq 4 \) - Multiply by 3: \( 2x \leq 12 \) - Divide by 2: \( x \leq 6 \) Now, we match the inequalities with their solutions: - \( 6x - 2 + 6x \geq -14 \Rightarrow x \geq -1 \) - \( -1 - 2(4x + 6) \leq -37 \Rightarrow x \geq 3 \) - \( 8 + \frac{2x}{3} \leq 12 \Rightarrow x \leq 6 \) So the matched solutions should look like this: 1. \( 6x - 2 + 6x \geq -14 \) matches with \( x \geq -1 \) 2. \( -1 - 2(4x + 6) \leq -37 \) matches with \( x \geq 3 \) 3. \( 8 + \frac{2x}{3} \leq 12 \) matches with \( x \leq 6 \)