\( y=-2 x^{2}+10 x-8 \) and \( y=x^{2}-2 x-8 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let’s dive into these equations! The first equation, \( y=-2 x^{2}+10 x-8 \), describes a downward-opening parabola due to the negative coefficient of \( x^2 \). You can find the vertex using the formula \( x = -\frac{b}{2a} \), yielding a maximum point in this case. Now, for the second equation, \( y=x^{2}-2 x-8 \), it describes an upward-opening parabola since the coefficient of \( x^2 \) is positive. This indicates that the graph will have a minimum point. Both equations can be graphed to visualize their intersections and behavior across different x-values. Why not plot them and see where they cross for a fun exploration of their relation?