\( \begin{array}{ll}\text { 28. } & 6-(-7) \\ \text { 29. } & (-4)+8 \\ \text { 30. } & (-4)-11 \\ \text { 31. } & (-5)+8 \\ \text { 32. } & 2-(-2) \\ \text { 33. } & (-8)+9 \\ \text { 34. } & 0+(-10)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
When you see a subtraction of a negative number, like in the case of \( 6-(-7) \), remember that subtracting a negative is the same as adding a positive! So, \( 6 - (-7) \) simplifies to \( 6 + 7 = 13 \). It’s like getting an unexpected bonus reward! Now, let's take a look at \( 0+(-10) \). Adding a negative number means you’re moving that amount in the negative direction on the number line. Therefore, \( 0 + (-10) \) equals \(-10\), just like stepping back 10 spaces on a game board. Just remember, when adding or subtracting, always pay attention to the signs; they can change the direction of your results!