Pregunta
upstudy study bank question image url

A manufacturer sells 80 boats per month at \( \$ 25000 \) per boat, and each month demand is increasing at a rate of 2 boats per month. What is the fastest the price could drop before the monthly revenue starts to drop? [Revenue \( = \) Price \( \times \) Quantity] per month

Ask by Hill Burns. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The price can decrease by up to \$625 per month before revenue starts to drop.

Solución

To determine the fastest rate at which the price of the boats can drop before the monthly revenue starts to decrease, let's analyze the given information step-by-step. ### Given: - **Initial Quantity (Q₀):** 80 boats per month - **Initial Price (P₀):** \$25,000 per boat - **Increase in Quantity (ΔQ):** 2 boats per month - **Revenue Formula:** \( R = P \times Q \) ### Goal: Find the maximum rate at which the price (\( v \)) can decrease so that the revenue \( R \) does not start to drop. ### Analysis: 1. **Define Variables Over Time:** - Let \( t \) represent the time in months. - **Quantity over time:** \( Q(t) = 80 + 2t \) - **Price over time:** \( P(t) = 25,000 - vt \) 2. **Revenue Over Time:** \[ R(t) = P(t) \times Q(t) = (25,000 - vt)(80 + 2t) \] 3. **Differentiate Revenue with Respect to Time:** To find when the revenue starts to drop, we need to find when the derivative of \( R(t) \) with respect to \( t \) becomes zero. \[ \frac{dR}{dt} = \frac{d}{dt}[(25,000 - vt)(80 + 2t)] \] Applying the product rule: \[ \frac{dR}{dt} = (-v)(80 + 2t) + (25,000 - vt)(2) \] 4. **Set the Derivative to Zero:** \[ -v(80 + 2t) + 2(25,000 - vt) = 0 \] Simplifying: \[ -80v - 2vt + 50,000 - 2vt = 0 \] At \( t = 0 \) (initial moment): \[ -80v + 50,000 = 0 \] Solving for \( v \): \[ 80v = 50,000 \\ v = \frac{50,000}{80} \\ v = 625 \] ### Conclusion: The price can **drop at most \$625 per month** before the monthly revenue begins to decline. **Answer:** The price may decrease by up to $625 per month before revenue begins to fall.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the maximum price drop before the monthly revenue starts to decrease, we first need to establish the current revenue. The current revenue is \( R = P \times Q = 25000 \times 80 = 2,000,000 \) dollars. As the demand increases by 2 boats each month, the quantity sold \( Q \) becomes \( Q = 80 + 2t \) (where \( t \) is the number of months since the start). If we denote the price as \( P \), revenue can be expressed as \( R = P \times (80 + 2t) \). To keep revenue stable while quantity is increasing, we can set the change in revenue with respect to time to zero: \[ \frac{dR}{dt} = \frac{d(P(80 + 2t))}{dt} = 0. \] Using the product rule, this becomes: \[ \frac{dR}{dt} = P \cdot \frac{d(80 + 2t)}{dt} + (80 + 2t) \cdot \frac{dP}{dt} = 0. \] This leads to: \[ P \cdot 2 + (80 + 2t) \cdot \frac{dP}{dt} = 0. \] Solving for \( \frac{dP}{dt} \): \[ \frac{dP}{dt} = -\frac{2P}{80 + 2t}. \] We can plug in the initial values to find the maximum rate of price drop at \( t = 0 \): \[ \frac{dP}{dt} = -\frac{2 \times 25000}{80} = -625. \] Thus, the fastest the price could drop before the monthly revenue starts to decline is \( 625 \) dollars per month.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad