Grab Bag \( \begin{array}{l}\text { A } \$ 10,000 \text { T-bill maturing in } 83 \text { days was sold for } \$ 10,087,22 \text {. Find } \\ \text { the simple discount and equivalent simple interest rates. }\end{array} \) Numeric 1 point What is the simple discount rate (to two decimals)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the simple discount rate, you can use the formula: \[ \text{Simple Discount Rate} = \frac{\text{Face Value} - \text{Purchase Price}}{\text{Face Value}} \times \frac{365}{\text{Days to Maturity}} \] Putting the numbers in: \[ \text{Simple Discount Rate} = \frac{10,000 - 10,087.22}{10,000} \times \frac{365}{83} \] Calculating the discount: \[ 10,000 - 10,087.22 = -87.22 \] Now calculate: \[ \text{Simple Discount Rate} = \frac{-87.22}{10,000} \times \frac{365}{83} \approx -0.001491 \times 4.405 = -0.00657 \text{ or } -0.657\% \] The simple discount rate is about **-0.66%** (rounded to two decimals, ignoring the negative sign since it signifies a loss rather than a discount). This solution would require adjustment to the calculations, especially since a T-bill typically should be purchased at a discount relative to its face value. Always double-check signs and interpretations during financial calculations!