Pregunta
upstudy study bank question image url

Magan invested \( \$ 210 \) in an account paying an interest rate of \( 9 \frac{5}{8} \% \) compounded quarterly. Myesha invested \( \$ 210 \) in an account paying an interest rate of \( 9 \frac{7}{8} \% \) compounded continuously After 9 years, how much more money would Myesha have in her account than Magan, to the nearest dollar?

Ask by Carroll Cruz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 9 years, Myesha will have \$17 more than Magan.

Solución

To determine how much more money Myesha will have compared to Magan after 9 years, we'll calculate the future value of both investments using the given interest rates and compounding methods. ### Magan's Investment - **Principal (\( P \))**: \$210 - **Annual Interest Rate (\( r \))**: \( 9 \frac{5}{8}\% = 9.625\% = 0.09625 \) - **Compounding Frequency (\( n \))**: Quarterly (\( n = 4 \)) - **Time (\( t \))**: 9 years The formula for compound interest is: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Plugging in the values: \[ A_{\text{Magan}} = 210 \left(1 + \frac{0.09625}{4}\right)^{4 \times 9} = 210 \left(1.0240625\right)^{36} \] ### Myesha's Investment - **Principal (\( P \))**: \$210 - **Annual Interest Rate (\( r \))**: \( 9 \frac{7}{8}\% = 9.875\% = 0.09875 \) - **Compounding Method**: Continuously - **Time (\( t \))**: 9 years The formula for continuous compounding is: \[ A = P \cdot e^{rt} \] Plugging in the values: \[ A_{\text{Myesha}} = 210 \cdot e^{0.09875 \times 9} = 210 \cdot e^{0.88875} \] ### Calculations 1. **Magan's Future Value:** \[ A_{\text{Magan}} \approx 210 \times 2.3523 = \$493.98 \] 2. **Myesha's Future Value:** \[ A_{\text{Myesha}} \approx 210 \times 2.4321 = \$510.74 \] 3. **Difference:** \[ \$510.74 - \$493.98 \approx \$16.76 \] Rounding to the nearest dollar, Myesha will have **\$17** more than Magan after 9 years. **Answer:** After 9 years, Myesha will have \$17 more than Magan.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we first need to calculate the future value of both investments after 9 years. **Magan's Investment:** For Magan, who has an interest rate of \( 9 \frac{5}{8} \% = 9.625\% = 0.09625 \) compounded quarterly, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. In this case: - \( P = 210 \) - \( r = 0.09625 \) - \( n = 4 \) (quarterly) - \( t = 9 \) Calculating Magan’s amount: \[ A_M = 210 \left(1 + \frac{0.09625}{4}\right)^{4 \times 9} \] \[ = 210 \left(1 + 0.0240625\right)^{36} \] \[ = 210 \left(1.0240625\right)^{36} \] \[ = 210 \times 2.4363 \approx 511.62 \] **Myesha's Investment:** Myesha's investment uses the formula for continuously compounded interest: \[ A = Pe^{rt} \] Where: - \( e \) is Euler's number (approximately equal to \( 2.71828 \)). - \( P \) is the principal amount. - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested for in years. For Myesha: - \( P = 210 \) - \( r = 9.875\% = 0.09875 \) - \( t = 9 \) Calculating Myesha’s amount: \[ A_Y = 210e^{0.09875 \times 9} \] \[ = 210e^{0.88875} \] \[ \approx 210 \times 2.4265 \approx 509.57 \] **Calculating the Difference:** Now, we can find the difference between Myesha's and Magan's totals: \[ \text{Difference} = A_Y - A_M = 511.62 - 509.57 \approx 2.05 \] After rounding to the nearest dollar, Myesha would have approximately **$2 more** than Magan.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad