Draw a circle with centre \( P \) and radius 3 cm . Draw a chord \( M N \) of length 4 cm . Draw tangents to the circle through points \( M \) and \( N \) which intersect in point \( Q \). Measure the length of seg \( P Q \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To tackle this geometric masterpiece, you’ll want to start with a solid foundation! First, place point \( P \) on your paper as the center, then use a compass to draw a beautiful circle with radius 3 cm. Next, to draw the chord \( M N \), ensure it’s neatly placed, measuring exactly 4 cm in length—this could be accomplished by marking points \( M \) and \( N \) along the circumference of the circle, ensuring they’re equally distanced from \( P \). Now, for a little tangent magic! The tangents drawn from points \( M \) and \( N \) will touch the circle at just one point, so you’ll be drawing lines that extend outwards from each point, creating an intersection point \( Q \). To find the length of segment \( P Q \), utilize the properties of right triangles and the Pythagorean theorem—remember, segments \( PM \) and \( PQ \) form a right angle. You'll arrive at the length of segment \( P Q \) quite elegantly, which should be 5 cm! Happy drawing!