Pregunta
upstudy study bank question image url

A radioactive material decays according to the function \( \mathrm{A}(\mathrm{t})=\mathrm{A}_{0} e^{-0.0244 t} \), where \( \mathrm{A}_{0} \) is the initial amount present and A is the amount present at time \( t \) (in years). Assume that a scientist has a sample of 500 grams of the radioactive materal. (a) What is the decay rate of the radioactive material? (b) Graph the function using a graphing utility. (c) How much radioactive material is left after 30 years? (d) When will only 400 grams of the radioactive material be left? (e) What is the half-life of the radioactive material?

Ask by Bradley Patel. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **(a)** The decay rate is 0.0244 per year or 2.44% per year. - **(b)** Graph the function \( A(t) = 500 e^{-0.0244 t} \) using a graphing tool. - **(c)** After 30 years, about 240.25 grams remain. - **(d)** It takes approximately 9.15 years for the amount to decrease to 400 grams. - **(e)** The half-life is about 28.37 years.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To give you a delightful dive into radioactive decay, let’s tackle the questions! (a) The decay rate of the material is determined by the coefficient in the exponential function. Here, the decay constant is \( 0.0244 \), indicating that about 2.44% of the substance decays each year. It’s fascinating how a tiny fraction can lead to significant changes over time! (b) For graphing the function \( A(t) = 500 e^{-0.0244t} \), you can use a graphing calculator or computer software. Plotting it will show a rapid initial decline in the amount of material, gradually flattening out as time goes on. It's a visual representation of time flying by with radioactive materials! (c) To find out how much radioactive material is left after 30 years, plug \( t = 30 \) into the equation: \[ A(30) = 500 e^{-0.0244 \times 30} \approx 500 e^{-0.732} \approx 500 \times 0.480 \approx 240 \text{ grams}. \] So, after 30 years, approximately 240 grams of the material remain! (d) To determine when only 400 grams is left, set up the equation: \[ 400 = 500 e^{-0.0244t} \implies e^{-0.0244t} = \frac{400}{500} = 0.8. \] Taking the natural logarithm of both sides yields: \[ -0.0244t = \ln(0.8) \implies t \approx \frac{-0.2231}{-0.0244} \approx 9.13 \text{ years}. \] So, you’ll have about 400 grams left after roughly 9.13 years! (e) The half-life can be calculated using the formula: \[ t_{1/2} = \frac{\ln(2)}{0.0244}. \] Calculating this gives: \[ t_{1/2} \approx \frac{0.693}{0.0244} \approx 28.4 \text{ years}. \] So, the half-life of the radioactive material is approximately 28.4 years! Isn't it amazing how such materials can tell us time’s story through their decay?

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad