Pregunta
upstudy study bank question image url

A radioactive material decays according to the function , where is the initial amount present and A
is the amount present at time (in years). Assume that a scientist has a sample of 500 grams of the radioactive
materal.
(a) What is the decay rate of the radioactive material?
(b) Graph the function using a graphing utility.
© How much radioactive material is left after 30 years?
(d) When will only 400 grams of the radioactive material be left?
(e) What is the half-life of the radioactive material?

Ask by Bradley Patel. in the United States
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  • (a) The decay rate is 0.0244 per year or 2.44% per year.
  • (b) Graph the function using a graphing tool.
  • © After 30 years, about 240.25 grams remain.
  • (d) It takes approximately 9.15 years for the amount to decrease to 400 grams.
  • (e) The half-life is about 28.37 years.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To give you a delightful dive into radioactive decay, let’s tackle the questions!
(a) The decay rate of the material is determined by the coefficient in the exponential function. Here, the decay constant is , indicating that about 2.44% of the substance decays each year. It’s fascinating how a tiny fraction can lead to significant changes over time!
(b) For graphing the function , you can use a graphing calculator or computer software. Plotting it will show a rapid initial decline in the amount of material, gradually flattening out as time goes on. It’s a visual representation of time flying by with radioactive materials!
© To find out how much radioactive material is left after 30 years, plug into the equation:
So, after 30 years, approximately 240 grams of the material remain!
(d) To determine when only 400 grams is left, set up the equation:
Taking the natural logarithm of both sides yields:
So, you’ll have about 400 grams left after roughly 9.13 years!
(e) The half-life can be calculated using the formula:
Calculating this gives:
So, the half-life of the radioactive material is approximately 28.4 years!
Isn’t it amazing how such materials can tell us time’s story through their decay?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad