Responder
To find the **margin of error** and the **sample proportion** from a confidence interval, follow these steps:
1. **Sample Proportion (\(\hat{p}\))**: Add the lower and upper limits of the confidence interval and divide by 2.
2. **Margin of Error (ME)**: Subtract the lower limit from the upper limit, then divide by 2.
**Example:**
For a confidence interval of (0.40, 0.60):
- \(\hat{p} = \frac{0.40 + 0.60}{2} = 0.50\)
- ME = \(\frac{0.60 - 0.40}{2} = 0.10\)
So, the sample proportion is **0.50** and the margin of error is **0.10**.
Solución
To determine the **margin of error** and the **sample proportion** from a given confidence interval, you can follow these general steps:
### 1. Understanding the Confidence Interval
A confidence interval for a population proportion is typically expressed in the form:
\[
(\text{Lower Limit}, \text{Upper Limit})
\]
For example, a 95% confidence interval might be:
\[
(0.40, 0.60)
\]
### 2. Calculating the Sample Proportion (\(\hat{p}\))
The **sample proportion** is the point estimate around which the confidence interval is constructed. It is calculated as the **midpoint** of the confidence interval:
\[
\hat{p} = \frac{\text{Lower Limit} + \text{Upper Limit}}{2}
\]
**Example:**
Given the confidence interval (0.40, 0.60):
\[
\hat{p} = \frac{0.40 + 0.60}{2} = \frac{1.00}{2} = 0.50
\]
So, the sample proportion \(\hat{p}\) is **0.50**.
### 3. Calculating the Margin of Error (ME)
The **margin of error** represents the range above and below the sample proportion and is calculated as **half the width** of the confidence interval:
\[
\text{ME} = \frac{\text{Upper Limit} - \text{Lower Limit}}{2}
\]
**Example:**
Using the same confidence interval (0.40, 0.60):
\[
\text{ME} = \frac{0.60 - 0.40}{2} = \frac{0.20}{2} = 0.10
\]
So, the margin of error is **0.10**.
### 4. Summary
- **Sample Proportion (\(\hat{p}\))**: The midpoint of the confidence interval.
- **Margin of Error (ME)**: Half the width of the confidence interval.
### 5. Applying to Your Confidence Interval
If you provide a specific confidence interval, you can apply the above steps to find the exact values for the margin of error and the sample proportion.
---
**Quick Reference:**
Given a confidence interval \((L, U)\):
\[
\hat{p} = \frac{L + U}{2}
\]
\[
\text{ME} = \frac{U - L}{2}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución