Pregunta
upstudy study bank question image url

Use the given confidence interval to find the margin of error and the sample proportion.

Ask by Parry Pope. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the **margin of error** and the **sample proportion** from a confidence interval, follow these steps: 1. **Sample Proportion (\(\hat{p}\))**: Add the lower and upper limits of the confidence interval and divide by 2. 2. **Margin of Error (ME)**: Subtract the lower limit from the upper limit, then divide by 2. **Example:** For a confidence interval of (0.40, 0.60): - \(\hat{p} = \frac{0.40 + 0.60}{2} = 0.50\) - ME = \(\frac{0.60 - 0.40}{2} = 0.10\) So, the sample proportion is **0.50** and the margin of error is **0.10**.

Solución

To determine the **margin of error** and the **sample proportion** from a given confidence interval, you can follow these general steps: ### 1. Understanding the Confidence Interval A confidence interval for a population proportion is typically expressed in the form: \[ (\text{Lower Limit}, \text{Upper Limit}) \] For example, a 95% confidence interval might be: \[ (0.40, 0.60) \] ### 2. Calculating the Sample Proportion (\(\hat{p}\)) The **sample proportion** is the point estimate around which the confidence interval is constructed. It is calculated as the **midpoint** of the confidence interval: \[ \hat{p} = \frac{\text{Lower Limit} + \text{Upper Limit}}{2} \] **Example:** Given the confidence interval (0.40, 0.60): \[ \hat{p} = \frac{0.40 + 0.60}{2} = \frac{1.00}{2} = 0.50 \] So, the sample proportion \(\hat{p}\) is **0.50**. ### 3. Calculating the Margin of Error (ME) The **margin of error** represents the range above and below the sample proportion and is calculated as **half the width** of the confidence interval: \[ \text{ME} = \frac{\text{Upper Limit} - \text{Lower Limit}}{2} \] **Example:** Using the same confidence interval (0.40, 0.60): \[ \text{ME} = \frac{0.60 - 0.40}{2} = \frac{0.20}{2} = 0.10 \] So, the margin of error is **0.10**. ### 4. Summary - **Sample Proportion (\(\hat{p}\))**: The midpoint of the confidence interval. - **Margin of Error (ME)**: Half the width of the confidence interval. ### 5. Applying to Your Confidence Interval If you provide a specific confidence interval, you can apply the above steps to find the exact values for the margin of error and the sample proportion. --- **Quick Reference:** Given a confidence interval \((L, U)\): \[ \hat{p} = \frac{L + U}{2} \] \[ \text{ME} = \frac{U - L}{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To extract the margin of error from a confidence interval, you simply take the difference between the upper limit and the sample proportion, or half the width of the interval. For example, if your confidence interval is (0.4, 0.6), the sample proportion is the midpoint, which is (0.4 + 0.6) / 2 = 0.5. The margin of error would be half the width, so (0.6 - 0.4) / 2 = 0.1. Thus, your sample proportion is 0.5, and the margin of error is 0.1! Always remember, the confidence interval gives you a range of values that you can be confident contains the true population proportion, but it's the margin of error that tells you just how much wiggle room there is around your sample's estimate. Keep these calculations in mind when interpreting your statistics!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad