Pregunta
upstudy study bank question image url

Ask by Ray Wright. in Iran
Jan 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The general solution to the equation with the initial condition is:
where and are constants determined by the initial conditions.

Solución

To solve the integro-differential equation:
with the initial condition (assuming this means for some initial time ), we can proceed as follows:

Step 1: Transform the Integro-Differential Equation into a Differential Equation

First, let’s differentiate both sides of the given equation with respect to :
This yields:
Rearranging terms, we obtain a second-order linear homogeneous differential equation:

Step 2: Solve the Characteristic Equation

The characteristic equation corresponding to the differential equation is:
Solving for :
The nature of the roots depends on the discriminant :
  1. Case 1: (Complex Roots)
    The roots are complex:
    Thus, the general solution is:
    where and are constants determined by initial conditions.
  2. Case 2: (Repeated Real Roots)
    The roots are real and equal:
    Thus, the general solution is:
  3. Case 3: (Distinct Real Roots)
    The roots are real and distinct:
    Thus, the general solution is:
    where and are the two distinct roots.

Step 3: Apply Initial Conditions

Assuming the initial condition is , you would substitute into the general solution and solve for the constants and based on any additional initial conditions provided (such as ).

Summary

The general solution to the given integro-differential equation is the solution to the second-order linear homogeneous differential equation derived above. Depending on the value of , the solution will involve exponentials, sines, and cosines.
Final General Solution:
After differentiating, the general solution satisfies y″ + r y′ + r y = 0. Thus,
y(t) = e^–rt⁄2 [ C₁ cos(½√(4r – r²) t) + C₂ sin(½√(4r – r²) t) ]
where C₁ and C₂ are constants determined by initial conditions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

This equation is a fascinating example of a first-order linear ordinary differential equation with an integral term that introduces complexity but also depth. Historically, equations like these have roots in physics and biology, describing systems where a quantity both influences and is influenced by its cumulative effect over time. Understanding how these relationships evolve is crucial in fields like population dynamics or economics.
To tackle this specific problem, a good approach would be to first rewrite the equation to isolate the dependent variable . Then, consider the integral term, as it might help to find a particular solution or use substitution techniques. Common mistakes include neglecting the initial condition and misapplying integration rules. Always remember to check if your solution satisfies the original equation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad