11. If \( \frac{x}{5}=2-\frac{x}{4} \), then \( x= \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( \frac{x}{5}=2-\frac{x}{4} \), we start by eliminating the fractions. We can do this by finding a common denominator, which is 20. Rewriting each term, we have: \[ \frac{x}{5} = \frac{4x}{20} \quad \text{and} \quad \frac{x}{4} = \frac{5x}{20}. \] Now substituting these back into the equation: \[ \frac{4x}{20} = 2 - \frac{5x}{20}. \] Multiplying the entire equation by 20 to clear the denominators gives: \[ 4x = 40 - 5x. \] Next, we combine like terms by adding \( 5x \) to both sides: \[ 4x + 5x = 40, \] which simplifies to: \[ 9x = 40. \] Now, divide by 9 to isolate \( x \): \[ x = \frac{40}{9}. \] Thus, the solution is \( x = \frac{40}{9} \).