Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 74 and standard deviation 22 . What is the probability that \( X \) is between 8 and 96 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Henry May. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 8 and 96 is approximately **0.839**.

Solución

To determine the probability that a normally distributed random variable \( X \) with mean \( \mu = 74 \) and standard deviation \( \sigma = 22 \) falls between 8 and 96, we'll use the **68-95-99.7 (Empirical) Rule**. ### Step 1: Standardize the Interval First, convert the values 8 and 96 to their corresponding **z-scores**: \[ z = \frac{X - \mu}{\sigma} \] - For \( X = 8 \): \[ z = \frac{8 - 74}{22} = \frac{-66}{22} = -3 \] - For \( X = 96 \): \[ z = \frac{96 - 74}{22} = \frac{22}{22} = 1 \] So, we're looking for \( P(-3 \leq Z \leq 1) \). ### Step 2: Apply the Empirical Rule The Empirical Rule states: - **68%** of data lies within **±1σ**, - **95%** within **±2σ**, - **99.7%** within **±3σ**. Using this: - \( P(-3 \leq Z \leq 3) = 99.7\% \) - \( P(-1 \leq Z \leq 1) = 68\% \) - \( P(Z \leq -3) = 0.15\% \) (since half of the remaining 0.3% lies below -3σ) Now, to find \( P(-3 \leq Z \leq 1) \): \[ P(-3 \leq Z \leq 1) = P(Z \leq 1) - P(Z < -3) \] \[ P(Z \leq 1) = 84\% \quad \text{(50\% below mean + 34\% within +1σ)} \] \[ P(Z < -3) = 0.15\% \] \[ P(-3 \leq Z \leq 1) = 84\% - 0.15\% = 83.85\% \] ### Step 3: Convert to Decimal \[ 83.85\% = 0.8385 \] Rounded to the nearest thousandth: \[ 0.839 \] **Final Answer:** The probability is approximately **0.839**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that \( X \) is between 8 and 96, we first determine how many standard deviations away the values 8 and 96 are from the mean (74). For \( X = 8 \): \[ Z_1 = \frac{8 - 74}{22} \approx \frac{-66}{22} = -3 \] For \( X = 96 \): \[ Z_2 = \frac{96 - 74}{22} \approx \frac{22}{22} = 1 \] Now we look at the standard normal distribution. According to the \( 0.68-0.95-0.997 \) rule, approximately 99.7% of the data falls within 3 standard deviations from the mean. Therefore, we can deduce: - The area from \( Z = -3 \) to \( Z = 0 \) (left tail) is about 49.85% since it captures half of the middle 99.7%. - The area from \( Z = 0 \) to \( Z = 1 \) (between the mean and one standard deviation) is about 34%. Adding these two areas together gives: \[ P(8 < X < 96) \approx 49.85\% + 34\% \approx 83.85\% \] Converting this percentage into a decimal, we have: \[ P(8 < X < 96) \approx 0.8385 \] Rounding to the nearest thousandth, the final answer is: \[ \boxed{0.839} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad