Pregunta
upstudy study bank question image url

(8) \( \sum_{r=2}^{m} 2(3-r)>-800 \)

Ask by Blake Hammond. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( m \leq 30 \)

Solución

To solve the inequality: \[ \sum_{r=2}^{m} 2(3 - r) > -800 \] let's break it down step by step. ### Step 1: Simplify the Sum First, factor out the constant \(2\): \[ \sum_{r=2}^{m} 2(3 - r) = 2 \sum_{r=2}^{m} (3 - r) \] Now, evaluate the sum inside: \[ \sum_{r=2}^{m} (3 - r) = \sum_{r=2}^{m} 3 - \sum_{r=2}^{m} r \] Calculate each part separately: 1. **Sum of Constants:** \[ \sum_{r=2}^{m} 3 = 3(m - 1) \] 2. **Sum of \(r\) from 2 to \(m\):** \[ \sum_{r=2}^{m} r = \sum_{r=1}^{m} r - 1 = \frac{m(m + 1)}{2} - 1 \] Putting it all together: \[ \sum_{r=2}^{m} (3 - r) = 3(m - 1) - \left(\frac{m(m + 1)}{2} - 1\right) \] Simplify: \[ = 3m - 3 - \frac{m^2 + m}{2} + 1 \] \[ = \frac{6m - 6 - m^2 - m + 2}{2} \] \[ = \frac{-m^2 + 5m - 4}{2} \] Multiply by 2 (from the earlier factor): \[ 2 \sum_{r=2}^{m} (3 - r) = -m^2 + 5m - 4 \] ### Step 2: Set Up the Inequality Now, set the simplified sum greater than \(-800\): \[ -m^2 + 5m - 4 > -800 \] Add \(800\) to both sides: \[ -m^2 + 5m + 796 > 0 \] Multiply both sides by \(-1\) (remember to reverse the inequality sign): \[ m^2 - 5m - 796 < 0 \] ### Step 3: Solve the Quadratic Inequality Find the roots of the quadratic equation \(m^2 - 5m - 796 = 0\) using the quadratic formula: \[ m = \frac{5 \pm \sqrt{25 + 3184}}{2} = \frac{5 \pm \sqrt{3209}}{2} \approx \frac{5 \pm 56.66}{2} \] This gives two approximate roots: \[ m \approx \frac{5 + 56.66}{2} \approx 30.83 \quad \text{and} \quad m \approx \frac{5 - 56.66}{2} \approx -25.83 \] Since \(m\) represents the upper limit of a sum starting from \(r = 2\), it must be a positive integer. Therefore, the valid range for \(m\) is: \[ -25.83 < m < 30.83 \] Considering \(m\) must be an integer: \[ m \leq 30 \] ### Final Answer For the inequality to hold, \(m\) must be at most 30.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the inequality \( \sum_{r=2}^{m} 2(3-r) > -800 \), we can first simplify the summation: 1. **Expanding the Sum:** \[ \sum_{r=2}^{m} 2(3-r) = 2 \sum_{r=2}^{m} (3-r) \] This can be further simplified to: \[ \sum_{r=2}^{m} (3-r) = \sum_{r=2}^{m} 3 - \sum_{r=2}^{m} r \] where \( \sum_{r=2}^{m} 3 = 3(m - 1) \) (since there are \( m-1 \) terms from 2 to m) and \( \sum_{r=2}^{m} r = \frac{m(m+1)}{2} - 1 \) (the sum of integers from 1 to m minus 1). Therefore, we can compute: \[ \sum_{r=2}^{m} (3-r) = 3(m-1) - \left( \frac{m(m+1)}{2} - 1 \right) \] Simplifying that gives: \[ = 3m - 3 - \frac{m(m+1)}{2} + 1 = 3m - \frac{m(m+1)}{2} - 2 \] 2. **Now putting back into the inequality:** \[ 2(3m - \frac{m(m+1)}{2} - 2) > -800 \] Simplifying: \[ 6m - m(m+1) - 4 > -800 \] Rearranging yields: \[ -m^2 + 5m + 796 > 0 \] 3. **Rearranging this can yield a standard quadratic inequality:** \[ m^2 - 5m - 796 < 0 \] 4. **Finding the roots of the corresponding equation:** We can use the quadratic formula: \[ m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{25 + 3184}}{2} = \frac{5 \pm \sqrt{3209}}{2} \] Now \( \sqrt{3209} \approx 56.6 \), which gives us: \[ m \approx \frac{5 \pm 56.6}{2} \] This yields two roots: \[ m_1 \approx 30.8, \quad m_2 \approx -25.8 \] 5. **Determine intervals for the quadratic to be less than zero:** Since the parabola opens upwards, it is negative between its roots. Hence, the solution is: \[ -25.8 < m < 30.8 \] So, the integer solution for \( m \) is: \[ m = 2, 3, \ldots, 30 \] In conclusion, \( m \) can take any integer value from 2 to 30, inclusive.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad