Pregunta
Solve the system by substitution. \[ \begin{aligned}-3 x-6 y & =45 \\ -5 y & =x\end{aligned} \]
Ask by Cox Gross. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = -25 \) and \( y = 5 \).
Solución
To solve the system of equations by substitution:
\[
\begin{aligned}
-3x - 6y &= 45 \quad \text{(1)} \\
-5y &= x \quad \text{(2)}
\end{aligned}
\]
**Step 1: Solve Equation (2) for \( x \).**
From equation (2):
\[
x = -5y
\]
**Step 2: Substitute \( x = -5y \) into Equation (1).**
\[
-3(-5y) - 6y = 45
\]
Simplify:
\[
15y - 6y = 45
\]
\[
9y = 45
\]
**Step 3: Solve for \( y \).**
\[
y = \frac{45}{9} = 5
\]
**Step 4: Substitute \( y = 5 \) back into \( x = -5y \) to find \( x \).**
\[
x = -5(5) = -25
\]
**Solution:**
\[
x = -25 \quad \text{and} \quad y = 5
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve the system by substitution, we start with the second equation: \[ -5y = x \quad \Rightarrow \quad x = -5y \] Next, we substitute \(x\) in the first equation: \[ -3(-5y) - 6y = 45 \] This simplifies to: \[ 15y - 6y = 45 \] Combining like terms, we get: \[ 9y = 45 \] Dividing both sides by 9 gives: \[ y = 5 \] Now, we substitute \(y\) back into the equation for \(x\): \[ x = -5(5) = -25 \] Thus, the solution to the system is: \[ (x, y) = (-25, 5) \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium