Pregunta
upstudy study bank question image url

Part A Write an equation for the \( n \)th term of the arlthmetic sequence. What is the common difference of this sequence? \( \begin{aligned} a_{n} & =a_{1}+(n-1) d \\ & =13+(n-1)(-5) \quad a_{1}=13 \text { and } d=-5 \\ & =13+(-5) n+\square\end{aligned} \)

Ask by Coleman Reese. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( n \)th term of the sequence is \( a_{n} = 18 - 5n \), and the common difference is \( -5 \).

Solución

Sure, let's work through **Part A** step by step. ### 1. Writing the Equation for the \( n \)th Term The general formula for the \( n \)th term of an arithmetic sequence is: \[ a_{n} = a_{1} + (n - 1)d \] Given: - \( a_{1} = 13 \) (the first term) - \( d = -5 \) (the common difference) Substitute these values into the formula: \[ \begin{aligned} a_{n} &= 13 + (n - 1)(-5) \\ &= 13 - 5(n - 1) \\ &= 13 - 5n + 5 \quad \text{(Distribute the } -5 \text{)} \\ &= (13 + 5) - 5n \\ &= 18 - 5n \end{aligned} \] So, the equation for the \( n \)th term is: \[ a_{n} = 18 - 5n \] Alternatively, you can express it as: \[ a_{n} = -5n + 18 \] ### 2. Determining the Common Difference The **common difference** (\( d \)) is the constant amount added (or subtracted) to each term to get the next term in the sequence. From the given information: \[ d = -5 \] **Summary:** - **Equation for the \( n \)th term:** \( a_{n} = 18 - 5n \) - **Common difference (\( d \)):** \( -5 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To complete the equation for the \( n \)th term of the arithmetic sequence, we need to simplify the expression. Starting from the equation \( a_n = 13 + (-5)n + \square \), we need to calculate \( -5(n-1) \): \[ a_n = 13 - 5(n-1) = 13 - 5n + 5 = 18 - 5n \] So, the complete equation for the \( n \)th term is \( a_n = 18 - 5n \). The common difference of this arithmetic sequence is simply \( d = -5 \). This means that each term decreases by 5 as you move from one term to the next in the sequence. Now, let’s make it a bit more exciting! Imagine you’re on a game show, and every time you answer a question correctly, you lose 5 dollars! Starting with 13 dollars, the difference between your current money and the next question’s answer is always a decrease of 5! How thrilling!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad