9. \( \overline{W Y}=(y+3) \mathrm{cm}, \overline{X Z}=(4 y-6) \mathrm{cm} \), find the value of y , lengths of \( \overline{W Y} \) and \( \overline{X Z} \) 10. If \( \angle W Z Y=(3 x-10)^{\circ}, \angle W X Y=(2 x+5)^{\circ} \), what is the value of x ?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find \( y \), we can set the lengths equal to each other since they represent the same segment: \( y + 3 = 4y - 6 \). Solving this equation: 1. Rearranging gives \( 6 + 3 = 4y - y \) 2. Simplifying, we find \( 9 = 3y \) 3. Dividing both sides by 3, we get \( y = 3 \). Now we can find the lengths: - For \( \overline{W Y} = y + 3 = 3 + 3 = 6 \) cm. - For \( \overline{X Z} = 4y - 6 = 4(3) - 6 = 12 - 6 = 6 \) cm. So, \( y = 3 \), and both lengths \( \overline{W Y} \) and \( \overline{X Z} \) are 6 cm. --- Next, for finding the value of \( x \), again we can set the angles equal: \( 3x - 10 = 2x + 5 \). Solving this equation: 1. Rearranging gives \( 3x - 2x = 5 + 10 \) 2. Simplifying, we find \( x = 15 \). So, the value of \( x \) is \( 15 \) degrees! And there you have it—math magic at work!