Pregunta
upstudy study bank question image url

midpoint \( _{\mathrm{BD}}=\left(\frac{-2+x}{2} ; \frac{4+y}{2}\right) \)

Ask by Carroll Luna. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The midpoint \( M \) of segment \( \overline{\mathrm{BD}} \) is \( \left( \frac{-2 + x}{2}, \frac{4 + y}{2} \right) \).

Solución

The expression you've provided represents the **midpoint** of a line segment \( \overline{\mathrm{BD}} \) in a Cartesian coordinate system. Let's break it down and understand how to work with it. ### Midpoint Formula The midpoint \( M \) of a line segment connecting two points \( B(x_1, y_1) \) and \( D(x_2, y_2) \) is given by the formula: \[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \] ### Your Expression You've provided the midpoint expression as: \[ _{\mathrm{BD}} = \left( \frac{-2 + x}{2} , \frac{4 + y}{2} \right) \] This suggests that one endpoint of the segment \( \overline{\mathrm{BD}} \) is known, and you're either solving for the other endpoint or verifying the midpoint. Let's assume: - Point \( B \) has coordinates \( (-2, 4) \). - Point \( D \) has coordinates \( (x, y) \). - The midpoint \( M \) has coordinates \( \left( \frac{-2 + x}{2}, \frac{4 + y}{2} \right) \). ### Possible Scenarios 1. **Finding the Midpoint Given Endpoints**: If you know both endpoints \( B \) and \( D \), you can directly substitute their coordinates into the midpoint formula to find \( M \). 2. **Finding an Endpoint Given the Midpoint and the Other Endpoint**: If you know the midpoint \( M \) and one endpoint (say \( B \)), you can solve for the unknown endpoint \( D(x, y) \). For example, if the midpoint \( M \) is known to be \( (m_x, m_y) \), then: \[ \frac{-2 + x}{2} = m_x \quad \Rightarrow \quad x = 2m_x + 2 \] \[ \frac{4 + y}{2} = m_y \quad \Rightarrow \quad y = 2m_y - 4 \] 3. **Verifying if a Point is the Midpoint**: If you have a candidate point for the midpoint, you can substitute it into the formula to verify its correctness based on known endpoints. ### Example **Problem**: Given that point \( B \) is \( (-2, 4) \) and the midpoint \( M \) of \( \overline{\mathrm{BD}} \) is \( (3, 1) \), find the coordinates of point \( D \). **Solution**: Using the midpoint formula: \[ \left( \frac{-2 + x}{2}, \frac{4 + y}{2} \right) = (3, 1) \] Set up the equations: \[ \frac{-2 + x}{2} = 3 \quad \Rightarrow \quad -2 + x = 6 \quad \Rightarrow \quad x = 8 \] \[ \frac{4 + y}{2} = 1 \quad \Rightarrow \quad 4 + y = 2 \quad \Rightarrow \quad y = -2 \] **Answer**: Point \( D \) is \( (8, -2) \). ### Conclusion If you provide more context or specify what you need assistance with regarding the midpoint expression, I can offer a more tailored solution. Whether it's solving for unknown coordinates, verifying a midpoint, or applying the formula in a particular problem, feel free to share additional details!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The formula you see represents the midpoint between two points B and D in a 2D coordinate system. By substituting the coordinates of B and D into the formula, you can find the average x- and y-coordinates, creating a point perfectly in-between them. For example, if B is at (-2, 4) and D is at (x, y), then substituting these values into the midpoint formula gives a clearer picture of where that midway point lies! To avoid common errors when using the midpoint formula, double-check your coordinate pairs. Mistakes usually stem from forgetting to average both \(x\) and \(y\) values! Also, remember to keep track of positive and negative signs when substituting, as they can drastically change the outcome of your midpoint calculations. Happy calculating!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad