Pregunta
upstudy study bank question image url

Example 1: Triangle \( A B C \) - Given: - Hypotenuse \( A B=10 \mathrm{~cm} \). - One leg \( A C=6 \mathrm{~cm} \). - \(
Ask by Ingram Fernandez. in Guyana
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The length of leg \( BC \) is \( 8 \, \text{cm} \).

Solución

To solve the problem involving triangle \( ABC \), we can use the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (\( c \)) is equal to the sum of the squares of the lengths of the other two sides (\( a \) and \( b \)). The formula is given by: \[ c^2 = a^2 + b^2 \] In this case: - The hypotenuse \( AB = 10 \, \text{cm} \) (denote this as \( c \)). - One leg \( AC = 6 \, \text{cm} \) (denote this as \( a \)). - We need to find the length of the other leg \( BC \) (denote this as \( b \)). ### Step 1: Set up the equation Using the Pythagorean theorem: \[ AB^2 = AC^2 + BC^2 \] Substituting the known values: \[ 10^2 = 6^2 + b^2 \] ### Step 2: Calculate the squares Calculating the squares: \[ 100 = 36 + b^2 \] ### Step 3: Solve for \( b^2 \) Rearranging the equation to isolate \( b^2 \): \[ b^2 = 100 - 36 \] Calculating the right side: \[ b^2 = 64 \] ### Step 4: Find \( b \) Taking the square root of both sides to find \( b \): \[ b = \sqrt{64} \] Calculating the square root: \[ b = 8 \, \text{cm} \] ### Conclusion The length of the other leg \( BC \) is \( 8 \, \text{cm} \). Thus, the final answer is: - \( BC = 8 \, \text{cm} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the concept of right triangles dates back to ancient civilizations like the Babylonians and Egyptians? They used their knowledge of geometry for practical tasks such as land surveying and construction. The Pythagorean theorem, which relates the sides of a right triangle, was famously documented by the Greek mathematician Pythagoras, although hints of its use can be traced back even earlier! In real-world applications, right triangles are used in various fields such as architecture, engineering, and physics. For instance, when designing a building, architects rely on the properties of right triangles to ensure structures are both stable and aesthetically pleasing. Whether you're hanging a picture frame or calculating the length of a ladder needed to reach a certain height, right triangles are a handy tool to simplify measurements and ensure safety!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad