3.2 The sum of an infinite, geometric series is \( 13,5(r \neq 1) \). The sum of the same series, calculated from the third term is 1,5 . 3.2.1 Calculate \( r \) if \( r>0 \). 3.2.2 Hence, determine the first THREE terms of the series.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( r \), we start with the formula for the sum of an infinite geometric series: \[ S = \frac{a}{1 - r} \] where \( a \) is the first term and \( r \) is the common ratio. From the problem, we have: \[ \frac{a}{1 - r} = 13.5 \quad \text{(1)} \] According to the problem, the sum from the third term onward is given as 1.5. The sum from the third term can be calculated as: \[ S' = \frac{ar^2}{1 - r} = 1.5 \quad \text{(2)} \] Now we have two equations (1) and (2): 1. \( \frac{a}{1 - r} = 13.5 \) 2. \( \frac{ar^2}{1 - r} = 1.5 \) From equation (1), we can express \( a \) as: \[ a = 13.5(1 - r) \quad \text{(3)} \] Substituting (3) into (2): \[ \frac{13.5(1 - r)r^2}{1 - r} = 1.5 \] This simplifies to: \[ 13.5r^2 = 1.5 \] Dividing both sides by 1.5 gives: \[ 9r^2 = 1 \] Thus, \[ r^2 = \frac{1}{9} \quad \Rightarrow \quad r = \frac{1}{3} \quad \text{(since \( r > 0 \))} \] Now that we have \( r \), we can determine the first three terms. Using equation (3): \[ a = 13.5(1 - \frac{1}{3}) = 13.5 \cdot \frac{2}{3} = 9 \] Now, the first three terms of the series are: - First term: \( a = 9 \) - Second term: \( ar = 9 \cdot \frac{1}{3} = 3 \) - Third term: \( ar^2 = 9 \cdot \left(\frac{1}{3}\right)^2 = 1 \) Thus, the first three terms of the series are \( 9, 3, 1 \).