Pregunta
3.2 The sum of an infinite, geometric series is
.
The sum of the same series, calculated from the third term is 1,5 .
3.2.1 Calculate
if
.
3.2.2 Hence, determine the first THREE terms of the series.
The sum of the same series, calculated from the third term is 1,5 .
3.2.1 Calculate
3.2.2 Hence, determine the first THREE terms of the series.
Ask by Montgomery Cervantes. in South Africa
Jan 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
First three terms: 9, 3, 1
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
To find
, we start with the formula for the sum of an infinite geometric series:
where
is the first term and
is the common ratio. From the problem, we have:
According to the problem, the sum from the third term onward is given as 1.5. The sum from the third term can be calculated as:
Now we have two equations (1) and (2):
From equation (1), we can express
as:
Substituting (3) into (2):
This simplifies to:
Dividing both sides by 1.5 gives:
Thus,
Now that we have
, we can determine the first three terms. Using equation (3):
Now, the first three terms of the series are:
- First term:
- Second term:
- Third term:
Thus, the first three terms of the series are
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium