Pregunta
upstudy study bank question image url

\( \equiv \) L) Listen Solve \( \log _{4}(-x)+\log _{4}(x+10)=2 \). Checkifor extraneous solutions. \( x=\square \) and \( x=\square \)

Ask by Carter Vega. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = -2 \) and \( x = -8 \)

Solución

To solve the equation: \[ \log_{4}(-x) + \log_{4}(x + 10) = 2 \] **Step 1: Combine the Logarithms** Using the logarithm property \(\log_b A + \log_b B = \log_b (A \cdot B)\), we combine the logs: \[ \log_{4} [(-x)(x + 10)] = 2 \] **Step 2: Remove the Logarithm** This implies: \[ (-x)(x + 10) = 4^2 \] \[ -x^2 - 10x = 16 \] Rearranging: \[ x^2 + 10x + 16 = 0 \] **Step 3: Solve the Quadratic Equation** Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ x = \frac{-10 \pm \sqrt{100 - 64}}{2} = \frac{-10 \pm 6}{2} \] This gives two potential solutions: \[ x = \frac{-10 + 6}{2} = -2 \quad \text{and} \quad x = \frac{-10 - 6}{2} = -8 \] **Step 4: Check for Extraneous Solutions** For logarithms to be defined: 1. The arguments must be positive. 2. Check each solution in the original equation. - **For \(x = -2\):** - \(\log_{4}(-(-2)) = \log_{4}(2)\) is valid. - \(\log_{4}(-2 + 10) = \log_{4}(8)\) is valid. - Substitute back: \(\frac{1}{2} + \frac{3}{2} = 2\) which holds true. - **For \(x = -8\):** - \(\log_{4}(-(-8)) = \log_{4}(8)\) is valid. - \(\log_{4}(-8 + 10) = \log_{4}(2)\) is valid. - Substitute back: \(\frac{3}{2} + \frac{1}{2} = 2\) which also holds true. Both solutions satisfy the original equation without being extraneous. **Final Answer:** \[ x = -2 \quad \text{and} \quad x = -8 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( \log _{4}(-x)+\log _{4}(x+10)=2 \), start by combining the logarithms: \[ \log_{4}((-x)(x+10)) = 2 \] This means that: \[ (-x)(x+10) = 4^2 = 16 \] So, we can rewrite the equation: \[ -x^2 - 10x - 16 = 0 \] Rearranging gives: \[ x^2 + 10x + 16 = 0 \] Now we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 1 \cdot 16}}{2 \cdot 1} \] \[ x = \frac{-10 \pm \sqrt{100 - 64}}{2} \] \[ x = \frac{-10 \pm \sqrt{36}}{2} \] \[ x = \frac{-10 \pm 6}{2} \] This gives us two possible solutions: 1. \( x = \frac{-4}{2} = -2 \) 2. \( x = \frac{-16}{2} = -8 \) Now let's check for extraneous solutions. Substitute \( x = -2 \): \[ \log_4(-(-2)) + \log_4(-2 + 10) = \log_4(2) + \log_4(8) = \log_4(2 \times 8) = \log_4(16) = 2 \] This is valid! Now check \( x = -8 \): \[ \log_4(-(-8)) + \log_4(-8 + 10) = \log_4(8) + \log_4(2) \] This becomes: \[ \log_4(8 \times 2) = \log_4(16) = 2 \] This is also valid! Thus, both solutions are correct: \( x = -2 \) and \( x = -8 \). To ensure clarity while dealing with logarithmic equations, knowing how to check for the domain of the logarithmic function is crucial. Logarithms are defined only for positive numbers, so you must always verify that the arguments of the logs remain positive throughout the operations. Understanding the properties of logarithmic identities can make solving logarithmic equations much simpler. Familiarize yourself with key transformations, such as the change of base formula and how to condense or expand logarithmic expressions. These tools can come in handy and save you time solving similar problems in the future!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad