Pregunta
upstudy study bank question image url

- Have minimum variance among all other estimators. NB: Proofs of these properties will be done in class

Ask by Parry Romero. in Ghana
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

An **UMVUE (Uniform Minimum Variance Unbiased Estimator)** is the most efficient unbiased estimator with the smallest variance among all unbiased estimators for a parameter. It ensures the most reliable and consistent estimates. For example, the sample mean \( \bar{X} \) is an UMVUE for the population mean \( \mu \) under certain conditions.

Solución

### Minimum Variance Among Estimators In the realm of statistical estimation, one desirable property of an estimator is its **variance**. An estimator with a lower variance is generally preferred because it implies more consistent and reliable estimates across different samples. Among all unbiased estimators, the **Uniform Minimum Variance Unbiased Estimator (UMVUE)** stands out for having the smallest variance. - **UMVUE (Uniform Minimum Variance Unbiased Estimator):** - **Definition:** An unbiased estimator that has the lowest variance among all unbiased estimators for a parameter. - **Significance:** Ensures the most efficient estimation by minimizing uncertainty. ### Key Properties - **Unbiasedness:** The estimator's expected value equals the true parameter value. - **Minimum Variance:** No other unbiased estimator has a lower variance for every possible value of the parameter. ### Example Consider estimating the population mean, \( \mu \). The sample mean \( \bar{X} \) is an unbiased estimator of \( \mu \) and, under certain conditions (e.g., normality), it serves as the UMVUE. ### NB: Proofs of these properties, including the derivation and conditions under which an estimator achieves minimum variance, will be covered in class.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the concept of minimum variance originated from the early developments of statistical theory in the 20th century? Pioneering statisticians, like Ronald A. Fisher, played a critical role in establishing the foundations for estimators that minimize variance, ultimately leading to the creation of methods we rely on today, such as the Maximum Likelihood Estimation (MLE). This innovative thinking revolutionized the field and laid the groundwork for modern statistical practices! In practice, using estimators with minimum variance is crucial! For instance, in finance, investors rely on these estimators to assess risks and returns when building portfolios. By choosing estimators that minimize variance, they can make more informed decisions that potentially lead to better financial outcomes. So, next time you're analyzing data, remember that varying your choices can lead to significant differences in results!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad