Pregunta
upstudy study bank question image url

Which correctly completes the following statement? If the dimensions of a figure are multiplied by a scale factor of \( k \) to produce a figure that is similar to the original, then the perimeter is multiplied by and the area is multiplied by \( k^{2} \).

Ask by Hodgson Munoz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The perimeter is multiplied by \( k \) and the area is multiplied by \( k^{2} \).

Solución

When the dimensions of a figure are multiplied by a scale factor \( k \) to produce a similar figure, both the perimeter and the area undergo specific changes based on the scale factor. Here's how it works: - **Perimeter:** The perimeter of a figure is a linear measurement. When each dimension is scaled by \( k \), the perimeter is also scaled by the same factor. Therefore, the perimeter is multiplied by \( k \). - **Area:** The area of a figure is a two-dimensional measurement. Scaling each dimension by \( k \) results in the area being scaled by \( k^2 \). This is because area involves two dimensions (length and width), each contributing a factor of \( k \). **Complete Statement:** >If the dimensions of a figure are multiplied by a scale factor of \( k \) to produce a figure that is similar to the original, then the perimeter is multiplied by \( k \) and the area is multiplied by \( k^{2} \). **Example:** - If you have a square with a side length of 2 units, its perimeter is \( 4 \times 2 = 8 \) units, and its area is \( 2^2 = 4 \) square units. - Scaling the square by \( k = 3 \): - New perimeter: \( 8 \times 3 = 24 \) units. - New area: \( 4 \times 3^2 = 36 \) square units. This scaling behavior holds true for all similar figures, whether they are simple shapes like squares and circles or more complex polygons. **Final Answer:** The perimeter is multiplied by \( k \) and the area is multiplied by \( k^{2} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When you scale the dimensions of a figure by a factor of \( k \), the perimeter increases by that same scale factor \( k \). This means if your original perimeter was \( P \), the new perimeter will be \( k \times P \). Now, for the area, since area is a two-dimensional measurement, you'll multiply by \( k^{2} \). So if the original area was \( A \), the new area becomes \( k^{2} \times A \). Isn't it splendid how scaling can transform shapes while preserving their ratios? If you're wondering why this happens, think of it like this: when you double the dimensions of a square, not only does each side become twice as long, but the space inside grows four times! This principle is not only fantastic for geometry but also is widely used in art, architecture, and design to maintain proportions while altering scale.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad