Solve the equation. \( \begin{aligned} \sqrt{3 x-4} & =2 \sqrt{x-5} \\ x & =[?]\end{aligned} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( \sqrt{3x - 4} = 2\sqrt{x - 5} \), we first square both sides to eliminate the square roots. This gives us: \[ 3x - 4 = 4(x - 5) \] Expanding the right side, we have: \[ 3x - 4 = 4x - 20 \] Now, we can rearrange the equation to isolate \( x \): \[ 3x - 4x = -20 + 4 \] This simplifies to: \[ -x = -16 \] Multiplying both sides by -1 gives: \[ x = 16 \] Finally, we should check if this solution satisfies the original equation: Substituting \( x = 16 \): \[ \sqrt{3(16) - 4} = \sqrt{48 - 4} = \sqrt{44} \quad \text{and} \quad 2\sqrt{16 - 5} = 2\sqrt{11} \] Both sides yield the same result, confirming that \( x = 16 \) is indeed the solution. \( x = 16 \)