Find the following limit using \( \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \). \( \lim _{x \rightarrow 0} \frac{\tan 5 x}{\sin 9 x} \) Select the correct choice below and, if necessary, fill in the answer box in your choice. A. \( \lim _{x \rightarrow 0} \frac{\tan 5 x}{\sin 9 x}=\square \) (Type an integer or a simplified fraction.) B. The limit does not exist.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the limit \( \lim _{x \rightarrow 0} \frac{\tan 5x}{\sin 9x} \), we can use the known limit \( \lim_{\theta \rightarrow 0} \frac{\sin \theta}{\theta} = 1 \) and the fact that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Rewriting the limit, we have: \[ \lim _{x \rightarrow 0} \frac{\tan 5x}{\sin 9x} = \lim _{x \rightarrow 0} \frac{\sin 5x}{\cos 5x \cdot \sin 9x} \] Next step is to express \( \sin 9x \) in terms of its limit: \[ \lim _{x \rightarrow 0} \frac{\sin 5x}{\sin 9x} = \lim _{x \rightarrow 0} \frac{\frac{\sin 5x}{5x}}{\frac{\sin 9x}{9x}} \cdot \frac{5x}{9x} \] Using the known limit, we have \( \lim_{x \rightarrow 0} \frac{\sin 5x}{5x} = 1 \) and \( \lim_{x \rightarrow 0} \frac{\sin 9x}{9x} = 1 \). Therefore, we get: \[ \lim _{x \rightarrow 0} \frac{\sin 5x}{\sin 9x} = \lim _{x \rightarrow 0} \frac{5x/9x}{1} = \frac{5}{9} \] Now, substituting back into the limit, we have: \[ \lim _{x \rightarrow 0} \frac{\tan 5x}{\sin 9x} = \lim _{x \rightarrow 0} \frac{\sin 5x}{\sin 9x \cos 5x} = \frac{5}{9} \cdot \frac{1}{1} = \frac{5}{9} \] Thus, the limit is: \[ \lim _{x \rightarrow 0} \frac{\tan 5x}{\sin 9x} = \frac{5}{9} \] So, the correct choice is: A. \( \lim _{x \rightarrow 0} \frac{\tan 5 x}{\sin 9 x} = \frac{5}{9} \)