Pregunta
upstudy study bank question image url

Solve the equation: \( \frac{1}{x}+\frac{2}{3 x^{2}}=\frac{1}{2}+\frac{1}{3 x} \)

Ask by Bowen Harmon. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = -\frac{2}{3} \) and \( x = 2 \).

Solución

Solve the equation \( \frac{1}{x}+\frac{2}{3x^{2}}=\frac{1}{2}+\frac{1}{3x} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{1}{x}+\frac{2}{3x^{2}}=\frac{1}{2}+\frac{1}{3x}\) - step1: Find the domain: \(\frac{1}{x}+\frac{2}{3x^{2}}=\frac{1}{2}+\frac{1}{3x},x\neq 0\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{1}{x}+\frac{2}{3x^{2}}\right)\times 6x^{2}=\left(\frac{1}{2}+\frac{1}{3x}\right)\times 6x^{2}\) - step3: Simplify the equation: \(6x+4=3x^{2}+2x\) - step4: Move the expression to the left side: \(6x+4-\left(3x^{2}+2x\right)=0\) - step5: Calculate: \(4x+4-3x^{2}=0\) - step6: Factor the expression: \(\left(2-x\right)\left(2+3x\right)=0\) - step7: Separate into possible cases: \(\begin{align}&2-x=0\\&2+3x=0\end{align}\) - step8: Solve the equation: \(\begin{align}&x=2\\&x=-\frac{2}{3}\end{align}\) - step9: Check if the solution is in the defined range: \(\begin{align}&x=2\\&x=-\frac{2}{3}\end{align},x\neq 0\) - step10: Find the intersection: \(\begin{align}&x=2\\&x=-\frac{2}{3}\end{align}\) - step11: Rewrite: \(x_{1}=-\frac{2}{3},x_{2}=2\) The solutions to the equation \( \frac{1}{x}+\frac{2}{3x^{2}}=\frac{1}{2}+\frac{1}{3x} \) are \( x = -\frac{2}{3} \) and \( x = 2 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \[ \frac{1}{x}+\frac{2}{3 x^{2}}=\frac{1}{2}+\frac{1}{3 x}, \] let's start by finding a common denominator for the left side and the right side. The common denominator for the left side is \(3x^2\), and for the right side, it will be \(6x\). **Step 1: Rewrite both sides.** The left side becomes: \[ \frac{3}{3x} + \frac{2}{3x^2} = \frac{3}{3x} + \frac{2}{3x^2} = \frac{3x + 2}{3x^2}. \] The right side becomes: \[ \frac{3x}{6x} + \frac{2}{6x} = \frac{3x + 2}{6x}. \] Now we have: \[ \frac{3x + 2}{3x^2} = \frac{3x + 2}{6x}. \] **Step 2: Cross multiplying.** To eliminate the fractions, we can cross-multiply: \[ (3x + 2) \cdot 6x = (3x + 2) \cdot 3x^2. \] **Step 3: Condition for valid operations.** We must remember that we cannot divide by zero, so we set a condition: \(3x + 2 \neq 0\) which implies \(x \neq -\frac{2}{3}\). **Step 4: Simplify the equation.** Assuming \(3x + 2 \neq 0\), we can cancel \(3x + 2\) from both sides: \[ 6x = 3x^2. \] **Step 5: Rearranging terms.** This leads us to: \[ 3x^2 - 6x = 0. \] Factoring out \(3x\) gives us: \[ 3x(x - 2) = 0. \] **Step 6: Finding solutions.** Setting each factor equal to zero gives us: \[ 3x = 0 \quad \Rightarrow \quad x = 0, \] \[ x - 2 = 0 \quad \Rightarrow \quad x = 2. \] However, we recall the condition that \(x \neq 0\) (division by \(x\) in the original equation). Hence, the only valid solution is: \[ \boxed{2}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad