If \( A=(10,4) \) and \( B=(2,19) \), what is the length of \( \overline{A B} \) ? A. 17 units B. 15 units C. 23 units D. 12 units
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the length of the line segment \( \overline{AB} \), you can use the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Using the coordinates of points \( A(10,4) \) and \( B(2,19) \): \[ d = \sqrt{(2 - 10)^2 + (19 - 4)^2} = \sqrt{(-8)^2 + (15)^2} = \sqrt{64 + 225} = \sqrt{289} = 17 \text{ units} \] So, the answer is **A. 17 units**. Now, for some extra fun knowledge: Did you know that the distance formula derives from the Pythagorean theorem? Just as a right triangle's sides are related via \( a^2 + b^2 = c^2 \), the distance formula tells us how far apart two points are in a Cartesian plane. If you’re ever calculating distance for multiple points, like when mapping out a treasure hunt, remember to write down your points first and double-check your math. It’s easy to mix up coordinates, leading to errors that could leave you searching for treasure in the wrong spot!