Subtract the following matrices and enter the final answer in the boxes below, one element per box. \( -2\left[\begin{array}{cc}-4 & 2 \\ 5 & 3\end{array}\right]-\left[\begin{array}{cc}-3 & 6 \\ -1 & 7\end{array}\right]= \) ?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
First, let's multiply the first matrix by -2: \(-2\left[\begin{array}{cc}-4 & 2 \\ 5 & 3\end{array}\right] = \left[\begin{array}{cc}8 & -4 \\ -10 & -6\end{array}\right]\). Now, we can perform the subtraction with the second matrix: \(\left[\begin{array}{cc}8 & -4 \\ -10 & -6\end{array}\right]-\left[\begin{array}{cc}-3 & 6 \\ -1 & 7\end{array}\right] = \left[\begin{array}{cc}8 - (-3) & -4 - 6 \\ -10 - (-1) & -6 - 7\end{array}\right]\). Calculating each element gives us: 1. \(8 + 3 = 11\) 2. \(-4 - 6 = -10\) 3. \(-10 + 1 = -9\) 4. \(-6 - 7 = -13\) Thus, the final answer after the subtraction is: \[ \begin{array}{cc} 11 & -10 \\ -9 & -13 \end{array} \] The numbers for the boxes would be: First box: 11 Second box: -10 Third box: -9 Fourth box: -13