Pregunta
upstudy study bank question image url

For questions 1 through 4, The functions \( p \) and \( r \) are shown. \[ p(x)=x^{2}-3 x+5 \quad r(x)=3 x-1 \] 1. Find a new function, \( c(x) \), that is defined by \( p(r(x)) \). 2. Determine the domain of \( c(x) \). Determine the range of \( c(x) \). Find \( p\left(r\left(\frac{1}{2}\right)\right) \).

Ask by Gonzalez Garrett. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. \( c(x) = 9x^{2} - 15x + 9 \) 2. Domain: All real numbers 3. Range: \( \left[ \frac{11}{4}, \infty \right) \) 4. \( p\left(r\left(\frac{1}{2}\right)\right) = \frac{15}{4} \)

Solución

Let's address each question step by step. --- ### **1. Find a new function, \( c(x) \), that is defined by \( p(r(x)) \).** Given: \[ p(x) = x^{2} - 3x + 5 \quad \text{and} \quad r(x) = 3x - 1 \] To find \( c(x) = p(r(x)) \), substitute \( r(x) \) into \( p(x) \): \[ c(x) = p(r(x)) = p(3x - 1) = (3x - 1)^{2} - 3(3x - 1) + 5 \] Expand and simplify: \[ \begin{align*} (3x - 1)^{2} &= 9x^{2} - 6x + 1 \\ -3(3x - 1) &= -9x + 3 \\ \end{align*} \] Combine all terms: \[ c(x) = 9x^{2} - 6x + 1 - 9x + 3 + 5 = 9x^{2} - 15x + 9 \] **Final Function:** \[ c(x) = 9x^{2} - 15x + 9 \] --- ### **2. Determine the domain of \( c(x) \).** Both \( p(x) \) and \( r(x) \) are polynomials: - \( r(x) = 3x - 1 \) is defined for all real numbers. - \( p(x) = x^{2} - 3x + 5 \) is also defined for all real numbers. Since the composition of two functions that are both defined for all real numbers is also defined for all real numbers: **Domain of \( c(x) \):** \[ \text{All real numbers, } \mathbb{R} \] --- ### **3. Determine the range of \( c(x) \).** The function \( c(x) = 9x^{2} - 15x + 9 \) is a quadratic function. Since the coefficient of \( x^{2} \) is positive (9), the parabola opens upwards, and thus the function has a minimum value. **Finding the vertex (minimum point):** The vertex of a quadratic function \( ax^{2} + bx + c \) occurs at: \[ x = -\frac{b}{2a} \] For \( c(x) \): \[ a = 9, \quad b = -15 \\ x = -\frac{-15}{2 \times 9} = \frac{15}{18} = \frac{5}{6} \] **Calculating \( c\left(\frac{5}{6}\right) \):** \[ c\left(\frac{5}{6}\right) = 9\left(\frac{5}{6}\right)^{2} - 15\left(\frac{5}{6}\right) + 9 \\ = 9\left(\frac{25}{36}\right) - \frac{75}{6} + 9 \\ = \frac{225}{36} - \frac{75}{6} + 9 \\ = \frac{25}{4} - \frac{25}{2} + 9 \\ = \frac{25 - 50 + 36}{4} \\ = \frac{11}{4} \] **Range of \( c(x) \):** \[ c(x) \geq \frac{11}{4} \] \[ \text{In interval notation: } \left[ \frac{11}{4}, \infty \right) \] --- ### **4. Find \( p\left(r\left(\frac{1}{2}\right)\right) \).** First, compute \( r\left(\frac{1}{2}\right) \): \[ r\left(\frac{1}{2}\right) = 3 \times \frac{1}{2} - 1 = \frac{3}{2} - 1 = \frac{1}{2} \] Next, compute \( p\left(\frac{1}{2}\right) \): \[ p\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{2} - 3 \times \frac{1}{2} + 5 = \frac{1}{4} - \frac{3}{2} + 5 \] \[ = \frac{1}{4} - \frac{6}{4} + \frac{20}{4} = \frac{1 - 6 + 20}{4} = \frac{15}{4} \] **Final Result:** \[ p\left(r\left(\frac{1}{2}\right)\right) = \frac{15}{4} \] --- ### **Summary of Answers:** 1. **Function \( c(x) \):** \[ c(x) = 9x^{2} - 15x + 9 \] 2. **Domain of \( c(x) \):** \[ \mathbb{R} \] 3. **Range of \( c(x) \):** \[ \left[ \frac{11}{4}, \infty \right) \] 4. **Value of \( p\left(r\left(\frac{1}{2}\right)\right) \):** \[ \frac{15}{4} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the new function \( c(x) \) defined by \( p(r(x)) \), we start by substituting \( r(x) \) into \( p(x) \). 1. **Finding \( c(x) \):** First, we need to substitute \( r(x) = 3x - 1 \) into \( p(x) = x^2 - 3x + 5 \): \[ c(x) = p(r(x)) = p(3x - 1) = (3x - 1)^2 - 3(3x - 1) + 5. \] Now, let's simplify \( c(x)\): \[ c(x) = (3x - 1)^2 - 9x + 3 + 5 = (9x^2 - 6x + 1) - 9x + 8 = 9x^2 - 15x + 9. \] 2. **Determining the domain of \( c(x) \):** The functions \( p(x) \) and \( r(x) \) are both polynomials, which are defined for all real numbers. Therefore, the domain of \( c(x) \) is: \[ \text{Domain of } c(x) = (-\infty, \infty). \] 3. **Determining the range of \( c(x) \):** To find the range of the quadratic function \( c(x) = 9x^2 - 15x + 9 \), we can use the vertex form. The vertex \( x \)-coordinate can be found using the formula \( x = -\frac{b}{2a} \): \[ x = -\frac{-15}{2 \cdot 9} = \frac{15}{18} = \frac{5}{6}. \] Now, substituting \( \frac{5}{6} \) into \( c(x) \): \[ c\left(\frac{5}{6}\right) = 9\left(\frac{5}{6}\right)^2 - 15\left(\frac{5}{6}\right) + 9 = 9 \cdot \frac{25}{36} - \frac{75}{6} + 9. \] This simplifies to: \[ = \frac{225}{36} - \frac{450}{36} + \frac{324}{36} = \frac{225 - 450 + 324}{36} = \frac{99}{36} = \frac{11}{4}. \] Since \( a = 9 > 0 \), the parabola opens upwards. Thus, the minimum value is \( \frac{11}{4} \) and the range is: \[ \text{Range of } c(x) = \left[\frac{11}{4}, \infty\right). \] 4. **Finding \( p\left(r\left(\frac{1}{2}\right)\right) \):** First, calculate \( r\left(\frac{1}{2}\right) \): \[ r\left(\frac{1}{2}\right) = 3 \cdot \frac{1}{2} - 1 = \frac{3}{2} - 1 = \frac{1}{2}. \] Now substitute this into \( p(x) \): \[ p\left(r\left(\frac{1}{2}\right)\right) = p\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - 3\left(\frac{1}{2}\right) + 5 = \frac{1}{4} - \frac{3}{2} + 5. \] Simplifying gives: \[ = \frac{1}{4} - \frac{6}{4} + \frac{20}{4} = \frac{1 - 6 + 20}{4} = \frac{15}{4}. \] In summary, we have: - \( c(x) = 9x^2 - 15x + 9 \) - Domain of \( c(x) = (-\infty, \infty) \) - Range of \( c(x) = \left[\frac{11}{4}, \infty\right) \) - \( p\left(r\left(\frac{1}{2}\right)\right) = \frac{15}{4} \)

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad