Pregunta
upstudy study bank question image url

In a survey, 22 parents were asked how much they spent on their child's last birthday gift. The results were roughly bell-shaped with a mean of \( \$ 46 \) and standard deviation of \( \$ 2 \). Construct a confidence interval at a \( 98 \% \) confidence level to estimate the average amount that parents spent on their child's birthday gift. Give your answers to one decimal place.

Ask by Fitzgerald Gonzalez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A 98% confidence interval for the mean is ($44.9, $47.1).

Solución

To construct a 98% confidence interval for the average amount parents spent on their child's birthday gift, we'll use the **t-distribution** because the sample size is small (n = 22) and the population standard deviation is unknown. ### Given: - **Sample Mean (\(\bar{x}\))**: \$46 - **Sample Standard Deviation (s)**: \$2 - **Sample Size (n)**: 22 - **Confidence Level**: 98% ### Steps to Calculate the Confidence Interval: 1. **Determine the Degrees of Freedom (df)**: \[ df = n - 1 = 22 - 1 = 21 \] 2. **Find the Critical t-Value (\(t^*\))**: For a 98% confidence level and 21 degrees of freedom, the critical t-value (\(t_{0.99}\)) is approximately **2.518**. (This can be found using a t-table or statistical software.) 3. **Calculate the Standard Error (SE)**: \[ SE = \frac{s}{\sqrt{n}} = \frac{2}{\sqrt{22}} \approx 0.426 \] 4. **Determine the Margin of Error (ME)**: \[ ME = t^* \times SE \approx 2.518 \times 0.426 \approx 1.075 \] Rounded to one decimal place, **ME ≈ 1.1** 5. **Construct the Confidence Interval**: \[ \text{Lower Limit} = \bar{x} - ME = 46 - 1.1 = 44.9 \] \[ \text{Upper Limit} = \bar{x} + ME = 46 + 1.1 = 47.1 \] ### **Final 98% Confidence Interval**: \[ \$44.9 \leq \mu \leq \$47.1 \] **Interpretation**: We are 98% confident that the true average amount parents spent on their child's birthday gift lies between \$44.9 and \$47.1. **Answer:** A 98 % confidence interval for the mean is ($44.9, $47.1).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To construct a confidence interval for the average amount spent on a child's birthday gift, you can use the formula for the confidence interval when the population standard deviation is known: \[ \text{Confidence Interval} = \text{mean} \pm z \times \left(\frac{\sigma}{\sqrt{n}}\right) \] Where: - Mean (\( \mu \)) = \$46 - Standard deviation (\( \sigma \)) = \$2 - Sample size (\( n \)) = 22 - \( z \) value for a 98% confidence level ≈ 2.33 (You can find this value from z-tables or calculators) Now, let's calculate the margin of error: 1. Calculate the standard error (SE): \[ SE = \frac{\sigma}{\sqrt{n}} = \frac{2}{\sqrt{22}} \approx \frac{2}{4.690} \approx 0.426 \] 2. Calculate the margin of error: \[ \text{Margin of Error} = z \times SE \approx 2.33 \times 0.426 \approx 0.994 \] 3. Determine the confidence interval: \[ \text{Lower Limit} = 46 - 0.994 \approx 45.0 \] \[ \text{Upper Limit} = 46 + 0.994 \approx 47.0 \] Thus, the 98% confidence interval to estimate the average amount that parents spent on their child's birthday gift is approximately \( \text{(45.0, 47.0)} \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad