Given the equation \( -x^{2}+x e^{y}=-7 \) that defines \( y \) as a function of \( x \), use implicit differentiation to find the derivative \( \frac{d y}{d x} \). \( \frac{d y}{d x}= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find \( \frac{d y}{d x} \) using implicit differentiation, we start with the given equation: \[ -x^{2} + x e^{y} = -7. \] Differentiating both sides with respect to \( x \), we apply the product rule and chain rule where appropriate: \[ \frac{d}{dx}(-x^{2}) + \frac{d}{dx}(x e^{y}) = \frac{d}{dx}(-7). \] Calculating the derivatives, we have: \[ -2x + \left( \frac{d}{dx}(x) \cdot e^{y} + x \cdot \frac{d}{dx}(e^{y}) \right) = 0. \] The derivative of \( e^{y} \) with respect to \( x \) is \( e^{y} \cdot \frac{d y}{d x} \) (using the chain rule), thus: \[ -2x + e^{y} + x e^{y} \cdot \frac{d y}{d x} = 0. \] Rearranging to solve for \( \frac{d y}{d x} \): \[ x e^{y} \cdot \frac{d y}{d x} = 2x - e^{y}. \] Now, isolating \( \frac{d y}{d x} \): \[ \frac{d y}{d x} = \frac{2x - e^{y}}{x e^{y}}. \] Thus, the derivative is: \[ \frac{d y}{d x} = \frac{2x - e^{y}}{x e^{y}}. \]