Pregunta
of 5 The graph of \( f(x)=x^{3} \) is transformed by multiplying the function by a factor of \( a=\frac{1}{4} \). Identify the new coordinate for \( x=4 \) after \( f(x) \) is vertically compressed. (1 point) The new coordinates are ( \( \square, \square) \).
Ask by French Lang. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The new coordinates are (4, 16).
Solución
After vertically compressing the function \( f(x) = x^3 \) by a factor of \( \frac{1}{4} \), the new function becomes:
\[
f_{\text{new}}(x) = \frac{1}{4}x^3
\]
To find the new coordinate for \( x = 4 \):
\[
f_{\text{new}}(4) = \frac{1}{4} \times 4^3 = \frac{1}{4} \times 64 = 16
\]
**The new coordinates are (4, 16).**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
When the function \( f(x) = x^{3} \) is vertically compressed by a factor of \( a = \frac{1}{4} \), the new function becomes \( g(x) = \frac{1}{4} f(x) = \frac{1}{4} x^{3} \). To find the new coordinate for \( x = 4 \), we substitute \( 4 \) into the transformed function: \( g(4) = \frac{1}{4} (4^{3}) = \frac{1}{4} (64) = 16 \). So, the new coordinates are \( (4, 16) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium