Pregunta

\( \cos (a-b) \)

Ask by Guzman Peters. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \cos(a - b) = \cos a \cos b + \sin a \sin b \]

Solución

The expression \( \cos(a - b) \) can be expanded using the **cosine difference identity**. This identity is a fundamental trigonometric formula that expresses the cosine of the difference of two angles in terms of the sines and cosines of the individual angles. ## Cosine Difference Identity \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] ### Derivation The cosine difference identity can be derived from the **Euler's formula** or using the **unit circle** and trigonometric identities. Here's a simple derivation using the sum and difference formulas: 1. **Start with the sum identity:** \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] 2. **Replace \( b \) with \( -b \):** \[ \cos(a - b) = \cos a \cos(-b) - \sin a \sin(-b) \] 3. **Use the even-odd properties of cosine and sine:** - \( \cos(-b) = \cos b \) (cosine is even) - \( \sin(-b) = -\sin b \) (sine is odd) 4. **Substitute these into the equation:** \[ \cos(a - b) = \cos a \cos b - \sin a (-\sin b) = \cos a \cos b + \sin a \sin b \] ### Example Suppose you want to find \( \cos(75^\circ) \). You can express 75° as the difference of two familiar angles, for example, \( 75^\circ = 45^\circ + 30^\circ \). Using the cosine difference identity: \[ \cos(75^\circ) = \cos(45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ \] Plugging in the known values: \[ \cos 45^\circ = \frac{\sqrt{2}}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \sin 45^\circ = \frac{\sqrt{2}}{2}, \quad \sin 30^\circ = \frac{1}{2} \] \[ \cos(75^\circ) = \left( \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} \right) - \left( \frac{\sqrt{2}}{2} \times \frac{1}{2} \right) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4} \] ### Applications Understanding the cosine difference identity is essential in various fields such as: - **Solving trigonometric equations:** It allows the simplification of complex trigonometric expressions. - **Signal processing:** Used in the analysis of waveforms and oscillations. - **Engineering and Physics:** Helps in solving problems involving harmonic motion and oscillatory systems. ### Summary The cosine of the difference of two angles can be expressed as: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] This identity is a powerful tool in simplifying and solving a wide range of trigonometric problems.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the formula for \( \cos (a-b) \) is derived from the angles of a right triangle? Specifically, it's expressed as \( \cos a \cos b + \sin a \sin b \). This beautiful relationship helps us break down complex trigonometric problems into simpler components, making calculations more manageable and enlightening! Now, let’s talk about real-world applications! The cosine difference formula can be incredibly useful in fields like physics and engineering. For instance, when analyzing waves or oscillations, understanding the phase difference between two signals can help engineers design better communication systems or optimize sound waves in acoustics. It’s like unlocking the secrets of nature using math!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad