Responder
\[
\cos(a - b) = \cos a \cos b + \sin a \sin b
\]
Solución
The expression \( \cos(a - b) \) can be expanded using the **cosine difference identity**. This identity is a fundamental trigonometric formula that expresses the cosine of the difference of two angles in terms of the sines and cosines of the individual angles.
## Cosine Difference Identity
\[
\cos(a - b) = \cos a \cos b + \sin a \sin b
\]
### Derivation
The cosine difference identity can be derived from the **Euler's formula** or using the **unit circle** and trigonometric identities. Here's a simple derivation using the sum and difference formulas:
1. **Start with the sum identity:**
\[
\cos(a + b) = \cos a \cos b - \sin a \sin b
\]
2. **Replace \( b \) with \( -b \):**
\[
\cos(a - b) = \cos a \cos(-b) - \sin a \sin(-b)
\]
3. **Use the even-odd properties of cosine and sine:**
- \( \cos(-b) = \cos b \) (cosine is even)
- \( \sin(-b) = -\sin b \) (sine is odd)
4. **Substitute these into the equation:**
\[
\cos(a - b) = \cos a \cos b - \sin a (-\sin b) = \cos a \cos b + \sin a \sin b
\]
### Example
Suppose you want to find \( \cos(75^\circ) \). You can express 75° as the difference of two familiar angles, for example, \( 75^\circ = 45^\circ + 30^\circ \).
Using the cosine difference identity:
\[
\cos(75^\circ) = \cos(45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ
\]
Plugging in the known values:
\[
\cos 45^\circ = \frac{\sqrt{2}}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \sin 45^\circ = \frac{\sqrt{2}}{2}, \quad \sin 30^\circ = \frac{1}{2}
\]
\[
\cos(75^\circ) = \left( \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} \right) - \left( \frac{\sqrt{2}}{2} \times \frac{1}{2} \right) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}
\]
### Applications
Understanding the cosine difference identity is essential in various fields such as:
- **Solving trigonometric equations:** It allows the simplification of complex trigonometric expressions.
- **Signal processing:** Used in the analysis of waveforms and oscillations.
- **Engineering and Physics:** Helps in solving problems involving harmonic motion and oscillatory systems.
### Summary
The cosine of the difference of two angles can be expressed as:
\[
\cos(a - b) = \cos a \cos b + \sin a \sin b
\]
This identity is a powerful tool in simplifying and solving a wide range of trigonometric problems.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución