Pregunta
Divide. If the polynomial does not divide evenly, include the remainder as a fraction. \[ (81 r+68) \div(9 r+7) \]
Ask by Salazar Carter. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{81 r + 68}{9 r + 7} = 9 + \frac{5}{9 r + 7}
\]
Solución
To divide the polynomial \( 81r + 68 \) by \( 9r + 7 \), follow these steps:
1. **Determine the Quotient:**
- Divide the leading term of the dividend by the leading term of the divisor:
\[
\frac{81r}{9r} = 9
\]
- So, the initial quotient is **9**.
2. **Multiply and Subtract:**
- Multiply the entire divisor by the quotient:
\[
9 \times (9r + 7) = 81r + 63
\]
- Subtract this from the original dividend:
\[
(81r + 68) - (81r + 63) = 5
\]
3. **Express the Final Result:**
- The remainder is **5**, which is less than the degree of the divisor \( 9r + 7 \).
- Therefore, the division can be expressed as:
\[
\frac{81r + 68}{9r + 7} = 9 + \frac{5}{9r + 7}
\]
**Final Answer:**
\[
\frac{81 r + 68}{9 r + 7} = 9 + \frac{5}{9 r + 7}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To divide \( (81r + 68) \) by \( (9r + 7) \), start with polynomial long division. 1. Divide the leading term \( 81r \) by the leading term \( 9r \) to get \( 9 \). 2. Multiply \( 9 \) by \( (9r + 7) \) to get \( 81r + 63 \). 3. Subtract this result from \( (81r + 68) \): \[ (81r + 68) - (81r + 63) = 68 - 63 = 5. \] So, the result of the division is: \[ 9 + \frac{5}{9r + 7}. \] Thus, the final answer is: \[ 9 + \frac{5}{9r + 7}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium