20. \( \frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify \( \frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}} \), you can rationalize the denominator. Multiply the numerator and denominator by the conjugate of the denominator, which is \( \sqrt{2} - \sqrt{3} \): \[ \frac{\sqrt{6}(\sqrt{2} - \sqrt{3})}{(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})} \] The denominator becomes: \[ (\sqrt{2})^2 - (\sqrt{3})^2 = 2 - 3 = -1 \] The numerator becomes: \[ \sqrt{6}(\sqrt{2} - \sqrt{3}) = \sqrt{12} - \sqrt{18} = 2\sqrt{3} - 3\sqrt{2} \] Putting it all together gives: \[ \frac{2\sqrt{3} - 3\sqrt{2}}{-1} = -2\sqrt{3} + 3\sqrt{2} \] So, the simplified result is: \[ 3\sqrt{2} - 2\sqrt{3} \]