Pregunta

Find the derivative of the following function using chain rule 1. \( f(x)=(3 x+1)\left(4 x^{2}-2 x\right) \)

Ask by Grant Campbell. in Canada
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The derivative of \( f(x) = (3x + 1)(4x^2 - 2x) \) is \( f'(x) = 36x^2 - 4x - 2 \).

Solución

To find the derivative of the function \( f(x) = (3x + 1)(4x^2 - 2x) \) using the **chain rule**, it's actually more appropriate to use the **product rule** since the function is a product of two functions. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), then the derivative of their product is: \[ (fg)' = f'g + fg' \] Let's apply this to the given function: 1. **Identify the functions:** \[ u(x) = 3x + 1 \quad \text{and} \quad v(x) = 4x^2 - 2x \] 2. **Find the derivatives of \( u(x) \) and \( v(x) \):** \[ u'(x) = \frac{d}{dx}(3x + 1) = 3 \] \[ v'(x) = \frac{d}{dx}(4x^2 - 2x) = 8x - 2 \] 3. **Apply the product rule:** \[ f'(x) = u'(x)v(x) + u(x)v'(x) \] \[ f'(x) = 3(4x^2 - 2x) + (3x + 1)(8x - 2) \] 4. **Expand and simplify:** \[ f'(x) = 12x^2 - 6x + (24x^2 - 6x + 8x - 2) \] \[ f'(x) = 12x^2 - 6x + 24x^2 + 2x - 2 \] \[ f'(x) = (12x^2 + 24x^2) + (-6x + 2x) - 2 \] \[ f'(x) = 36x^2 - 4x - 2 \] **Final Answer:** \[ f'(x) = 36x^2 - 4x - 2 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To differentiate the function \( f(x) = (3x + 1)(4x^2 - 2x) \) using the chain rule, we first use the product rule. According to the product rule, if \( u(x) = 3x + 1 \) and \( v(x) = 4x^2 - 2x \), then: \[ f'(x) = u'v + uv' \] Calculating derivatives, we get: - \( u' = 3 \) - \( v' = 8x - 2 \) Now plug these into the product rule: \[ f'(x) = (3)(4x^2 - 2x) + (3x + 1)(8x - 2) \] Expanding this gives: \[ f'(x) = 12x^2 - 6x + (24x^2 - 6x + 8x - 2) \] Simplifying further: \[ f'(x) = 12x^2 - 6x + 24x^2 + 2x - 2 = 36x^2 - 4x - 2 \] Thus, the derivative \( f'(x) = 36x^2 - 4x - 2 \). Let's have some fun with derivatives! Derivatives can be like magic spells in calculus, allowing you to conjure up the rate of change of functions, be it for a roller coaster ride or a stock market graph. Once you master those chain and product rules, you're well on your way to becoming a calculus wizard! And speaking of functions, did you know that the concept of derivatives dates back to the works of Sir Isaac Newton and Gottfried Wilhelm Leibniz in the late 1600s? They were like competing wizards dishing out powerful spells, laying the groundwork for modern calculus!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad