Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { x + y \geq 6 } \\ { x \geq 4 } \\ { ( 4 , - 2 ) } \\ { ( - 1,7 ) } \\ { ( 4,2 ) } \end{array} \right. \)

Ask by Mullins Griffiths. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The point \( (4, 2) \) satisfies both inequalities \( x + y \geq 6 \) and \( x \geq 4 \).

Solución

Certainly! Let's analyze the given system of inequalities and determine which of the provided points satisfy all conditions. ## Given System of Inequalities \[ \begin{cases} x + y \geq 6 \\ x \geq 4 \end{cases} \] ### Understanding the Inequalities 1. **\( x + y \geq 6 \)**: - This inequality represents all the points on or above the line \( x + y = 6 \) in the Cartesian plane. - **Boundary Line**: \( x + y = 6 \) - **Shading**: Above the line since it's \( \geq \). 2. **\( x \geq 4 \)**: - This inequality represents all the points to the right of (and including) the vertical line \( x = 4 \). - **Boundary Line**: \( x = 4 \) - **Shading**: To the right of the line since it's \( \geq \). ### Graphical Representation Below is a graphical representation of the system: ![Graph of the inequalities](https://i.imgur.com/zZxkBtK.png) - The **red line** represents \( x + y = 6 \), with the region above shaded. - The **blue vertical line** represents \( x = 4 \), with the region to the right shaded. - The **intersection** of these shaded regions is the solution set where both inequalities are satisfied. ### Evaluating the Given Points Let's examine each point to see if it satisfies both inequalities. 1. **Point \( (4, -2) \)** - **Check \( x \geq 4 \)**: - \( x = 4 \) ✔️ - **Check \( x + y \geq 6 \)**: - \( 4 + (-2) = 2 \) - \( 2 \geq 6 \) ❌ **Result**: Does **not** satisfy both inequalities. 2. **Point \( (-1, 7) \)** - **Check \( x \geq 4 \)**: - \( x = -1 \) - \( -1 \geq 4 \) ❌ - (No need to check the second inequality since the first one fails.) **Result**: Does **not** satisfy both inequalities. 3. **Point \( (4, 2) \)** - **Check \( x \geq 4 \)**: - \( x = 4 \) ✔️ - **Check \( x + y \geq 6 \)**: - \( 4 + 2 = 6 \) - \( 6 \geq 6 \) ✔️ **Result**: **Satisfies** both inequalities. ### Summary - **\( (4, -2) \)**: Does **not** satisfy the system. - **\( (-1, 7) \)**: Does **not** satisfy the system. - **\( (4, 2) \)**: **Satisfies** the system. Only the point **\( (4, 2) \)** lies within the solution region defined by the given inequalities.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The system of inequalities defines a region in a two-dimensional plane. The first inequality, \(x + y \geq 6\), indicates that the area above the line \(y = 6 - x\) is part of the solution set. The second inequality, \(x \geq 4\), restricts the solution to the right of the line \(x = 4\). This creates a polygonal feasible region. Points like (4, 2) satisfy both conditions, while points (4, -2) and (-1, 7) do not. In practical terms, such inequalities are often used in optimization problems like resource allocation, budgeting, or scheduling. For instance, if \(x\) represents hours of work and \(y\) represents materials used, these inequalities could help visually identify the best combination of resources to meet production goals. It’s essential to properly plot these inequalities to visualize the feasible region clearly!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad