What is the value of the expression \( \left(\frac{2}{5}+\frac{2}{5}\right) \times \frac{3}{10} \) ? A. \( \frac{6}{125} \) B. \( \frac{3}{25} \) C. \( \frac{7}{50} \) D. \( \frac{6}{25} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To evaluate the expression \( \left(\frac{2}{5}+\frac{2}{5}\right) \times \frac{3}{10} \), let's first simplify the part inside the parentheses. We have: \[ \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \] Now substituting this back into the expression gives: \[ \left(\frac{4}{5}\right) \times \frac{3}{10} \] Next, multiplying these fractions: \[ \frac{4 \times 3}{5 \times 10} = \frac{12}{50} \] Now we can simplify \( \frac{12}{50} \) by dividing the numerator and the denominator by 2: \[ \frac{12 \div 2}{50 \div 2} = \frac{6}{25} \] Thus, the value of the expression is: \[ \boxed{\frac{6}{25}} \]