ent Practice Circle the number that will make the equation true. \( \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array} \) \( 4+\frac{\square}{4}=1+8 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the equation \(4 + \frac{\square}{4} = 1 + 8\), first calculate the right side: \(1 + 8 = 9\). Now we have \(4 + \frac{\square}{4} = 9\). To isolate \(\frac{\square}{4}\), subtract 4 from both sides: \(\frac{\square}{4} = 9 - 4\), which simplifies to \(\frac{\square}{4} = 5\). To solve for \(\square\), multiply both sides by 4: \(\square = 5 \times 4 = 20\). However, since \(20\) is not in the given options, let’s go through potential numbers: - If we try \(8\), then \(4 + \frac{8}{4} = 4 + 2 = 6\) (not right). - If we try \(7\), then \(4 + \frac{7}{4} \approx 4 + 1.75 = 5.75\) (not right). - If we try \(6\), then \(4 + \frac{6}{4} = 4 + 1.5 = 5.5\) (not right). - If we try \(5\), then \(4 + \frac{5}{4} = 4 + 1.25 = 5.25\) (not right). - If we try \(3\), then \(4 + \frac{3}{4} = 4 + 0.75 = 4.75\) (not right). - If we try \(2\), then \(4 + \frac{2}{4} = 4 + 0.5 = 4.5\) (not right). - Finally, if we try \(1\), then \(4 + \frac{1}{4} = 4 + 0.25 = 4.25\) (not right). In this case, none of the options given will complete the equation correctly because the calculated answer \(20\) is unavailable. The required number \(\square\) should be \(20\).