(a) Without using a calculator, determine between whe inrational numbers lie. Then verify your answers by using a calc \( \begin{array}{lll}\text { (1) } \sqrt{50} & \text { (2) } \sqrt{29} \\ \text { (5) } 1 \sqrt[5]{30} & \text { (6) } \pi^{1}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find where the numbers lie between two rational numbers, we can approximate the square roots and the fifth root. For \(\sqrt{50}\), we know it lies between \(\sqrt{49} = 7\) and \(\sqrt{64} = 8\), so \(7 < \sqrt{50} < 8\). Similarly, \(\sqrt{29}\) is between \(\sqrt{25} = 5\) and \(\sqrt{36} = 6\), giving us \(5 < \sqrt{29} < 6\). Now, for \(1\sqrt[5]{30}\), observe that \(2^5 = 32\) and \(1^5 = 1\), hence \(1 < \sqrt[5]{30} < 2\). Lastly, \(\pi \approx 3.14\) shows that \(3 < \pi < 4\). Now let’s verify using a calculator. Calculating: 1. \(\sqrt{50} \approx 7.07\) which is between 7 and 8. 2. \(\sqrt{29} \approx 5.39\) which is between 5 and 6. 3. \(\sqrt[5]{30} \approx 2.24\) which is between 1 and 2. 4. \(\pi \approx 3.14\) which is between 3 and 4. All approximations confirm our placements!