Pregunta
Find the \( x \)-intercept of the following line. \[ y=-\frac{9}{4} x-1 \] Enter the answer as ordered pair \( (x, y) \).
Ask by Black Osborne. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The \( x \)-intercept is at \( \left( -\frac{4}{9}, 0 \right) \).
Solución
To find the \( x \)-intercept of the line given by the equation:
\[
y = -\frac{9}{4}x - 1
\]
the \( x \)-intercept occurs where \( y = 0 \).
Set \( y \) to 0 and solve for \( x \):
\[
0 = -\frac{9}{4}x - 1
\]
Add 1 to both sides:
\[
\frac{9}{4}x = -1
\]
Multiply both sides by \( \frac{4}{9} \):
\[
x = -\frac{4}{9}
\]
Therefore, the \( x \)-intercept is at the point \( \left( -\frac{4}{9}, 0 \right) \).
**Answer:** \(\left( -\dfrac{4}{9},\ 0 \right)\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the \( x \)-intercept of the line given by the equation \( y = -\frac{9}{4} x - 1 \), we need to set \( y \) to 0 and solve for \( x \). Setting \( y \) to 0: \[ 0 = -\frac{9}{4} x - 1 \] Now, add 1 to both sides: \[ 1 = -\frac{9}{4} x \] Next, multiply both sides by \(-\frac{4}{9}\) to isolate \( x \): \[ x = -\frac{4}{9}(1) = -\frac{4}{9} \] So, the \( x \)-intercept is the ordered pair: \[ \left(-\frac{4}{9}, 0\right) \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium