Pregunta
upstudy study bank question image url

Use the imaginary number \( i \) to rewrite the expression below as a complex number. Simplify all radicals. \( 8+\sqrt{-96} \) \begin{tabular}{|l}\hline\( i \)\end{tabular}

Ask by Salinas Turner. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 8 + 4\sqrt{6}\,i \)

Solución

To rewrite the expression \( 8 + \sqrt{-96} \) as a complex number, follow these steps: 1. **Express the square root of a negative number using \( i \):** \[ \sqrt{-96} = \sqrt{96} \cdot i \] 2. **Simplify \( \sqrt{96} \):** \[ 96 = 16 \times 6 \quad \Rightarrow \quad \sqrt{96} = \sqrt{16 \times 6} = \sqrt{16} \cdot \sqrt{6} = 4\sqrt{6} \] 3. **Combine the results:** \[ \sqrt{-96} = 4\sqrt{6} \cdot i \] 4. **Write the original expression as a complex number:** \[ 8 + \sqrt{-96} = 8 + 4\sqrt{6}\,i \] **Final Answer:** \[ 8 + 4\sqrt{6}\,i \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To rewrite the expression \( 8 + \sqrt{-96} \) as a complex number, we can first simplify the square root of a negative number by recognizing that \( \sqrt{-1} = i \). Thus, we have: \[ \sqrt{-96} = \sqrt{96} \cdot \sqrt{-1} = \sqrt{96}i \] Next, we simplify \( \sqrt{96} \). The number 96 can be factored as: \[ 96 = 16 \times 6 = 4^2 \times 6 \] So, \[ \sqrt{96} = \sqrt{16 \times 6} = \sqrt{16} \cdot \sqrt{6} = 4\sqrt{6} \] Now we replace \( \sqrt{96} \) back into the expression: \[ \sqrt{-96} = 4\sqrt{6}i \] Substituting this back into the original expression gives: \[ 8 + \sqrt{-96} = 8 + 4\sqrt{6}i \] Therefore, the simplified form of the expression as a complex number is: \[ 8 + 4\sqrt{6}i \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad