\( \frac{3 x-3}{15}+\frac{5 x-5}{3}=\square \) (Simplify your answer. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify the equation \( \frac{3 x-3}{15}+\frac{5 x-5}{3} \), we first notice that both fractions can be simplified. Starting with the first fraction: \[ \frac{3(x-1)}{15} = \frac{x-1}{5} \] Now for the second fraction: \[ \frac{5(x-1)}{3} \] Now we can combine these simplified expressions: \[ \frac{x-1}{5} + \frac{5(x-1)}{3} \] To add these two fractions, we need a common denominator, which in this case is 15. So, we rewrite the fractions: \[ \frac{x-1}{5} = \frac{3(x-1)}{15} \quad \text{and} \quad \frac{5(x-1)}{3} = \frac{25(x-1)}{15} \] Adding these together gives: \[ \frac{3(x-1) + 25(x-1)}{15} = \frac{(3+25)(x-1)}{15} = \frac{28(x-1)}{15} \] So, the simplified answer is: \[ \frac{28(x-1)}{15} \]