Pregunta
upstudy study bank question image url

Given \( f(x)=3 x^{2}+3 x-2 \), find the slope of the tangent line of \( f \) at the point whe \( x=-4 \).

Ask by Rowe Whittaker. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope of the tangent line at \( x = -4 \) is -21.

Solución

To find the slope of the tangent line to the function \( f(x) = 3x^2 + 3x - 2 \) at the point where \( x = -4 \), you'll need to compute the derivative of \( f(x) \) and then evaluate it at \( x = -4 \). ### Step 1: Find the Derivative of \( f(x) \) The derivative of a function gives the slope of the tangent line at any point \( x \). For \( f(x) = 3x^2 + 3x - 2 \), the derivative \( f'(x) \) is calculated as follows: \[ f'(x) = \frac{d}{dx}(3x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(2) \] \[ f'(x) = 6x + 3 \] ### Step 2: Evaluate the Derivative at \( x = -4 \) Now, substitute \( x = -4 \) into the derivative to find the slope at that point: \[ f'(-4) = 6(-4) + 3 \] \[ f'(-4) = -24 + 3 = -21 \] ### Conclusion The slope of the tangent line to the function \( f(x) \) at \( x = -4 \) is **-21**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the slope of the tangent line of the function \( f(x) = 3x^2 + 3x - 2 \) at the point where \( x = -4 \), we first need to determine the derivative of the function, which gives us the slope of the tangent line at any point \( x \). The derivative, \( f'(x) \), is calculated as follows: \[ f'(x) = \frac{d}{dx}(3x^2 + 3x - 2) = 6x + 3. \] Next, we substitute \( x = -4 \) into the derivative to find the slope at that specific point: \[ f'(-4) = 6(-4) + 3 = -24 + 3 = -21. \] Thus, the slope of the tangent line of \( f \) at the point when \( x = -4 \) is \(-21\). Now for some fun facts! Did you know that calculus, the foundation for finding derivatives and slopes, was independently developed by Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century? It was a revolutionary way to describe change and motion, giving rise to mathematical principles that power much of modern science and engineering today! For a real-world application, think of a car navigating a hilly road. The slope of the tangent line at any given point on the road can tell you how steep the hill is at that moment. If the slope is positive, you're going uphill; if it's negative, you're going downhill. Knowing the slope helps drivers understand how to adjust their speed and gear, making it an essential skill in both math and everyday driving!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad