Pregunta
upstudy study bank question image url

Determine if the correspondence is a function. Domain \( \quad \) a set of numbers Correspondence \( \begin{array}{ll}\text { the square of each number } \\ \text { Range set of numbers }\end{array} \) Is this correspondence a function? Yes No

Ask by Gray Watson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Yes, the correspondence is a function because each number in the domain is paired with exactly one number in the range by squaring it.

Solución

Yes, the correspondence described is a function. Here's why: ### Definition of a Function A **function** is a relation between a set of inputs (domain) and a set of possible outputs (range) where **each input is related to exactly one output**. ### Given Correspondence - **Domain:** A set of numbers. - **Correspondence:** The square of each number. - **Range:** Set of numbers resulting from the squaring process. ### Analysis - **Uniqueness:** For every number \( x \) in the domain, squaring it (\( x^2 \)) produces exactly one output. - **Well-Defined:** There is no ambiguity in the output; each input has a clear, single output. ### Conclusion Since every input number is associated with one and only one output (its square), the correspondence satisfies the definition of a function. **Answer:** Yes

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Yes, this correspondence is a function! In this case, each number in the domain is being mapped to the square of that number. Since squaring a number will always produce one unique output for each unique input, there's no overlap or multiple outputs for the same input—defining it perfectly as a function. Now let's think about the range! When you square numbers, the outputs will always be non-negative. So, whether you square a positive number, zero, or a negative number, the result will always be 0 or greater. This leads to a range of all non-negative numbers. So, in this case, the function isn't just valid; it's also pretty interesting!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad