A company finds that the cost, in dollars, of producing \( t \) handbags is given by \( C(t)=465+25 t+10 t^{2} \). Find the rate at which average cost, \( \frac{C(t)}{t} \), is changing when 200 handbags have been produced. (Round to the nearest cent.) The average cost is ? by handbags are produced.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the rate at which the average cost is changing, we first need to express the average cost function, \( A(t) = \frac{C(t)}{t} \). From the cost function \( C(t) = 465 + 25t + 10t^2 \), we can derive: \[ A(t) = \frac{465 + 25t + 10t^2}{t} = \frac{465}{t} + 25 + 10t \] Next, we differentiate \( A(t) \) with respect to \( t \) using the quotient rule. \[ A'(t) = -\frac{465}{t^2} + 10 \] Now, let's calculate \( A'(t) \) when \( t = 200 \): \[ A'(200) = -\frac{465}{200^2} + 10 = -\frac{465}{40000} + 10 = -0.011625 + 10 \approx 9.988375 \] Rounding it to the nearest cent gives us: The average cost is decreasing by approximately \( \$9.99 \) when 200 handbags are produced.