Pregunta
How long is the arc intersected by a central angle of
radians in a circle with a radius of 2 m R Round your answer to
the nearest tenth. Use 3.14 for r .
2.6 f
7.0 f
10.5 ft
31.4 ft
the nearest tenth. Use 3.14 for r .
2.6 f
7.0 f
10.5 ft
31.4 ft
Ask by Stewart Spencer. in the United States
Mar 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The arc length is approximately 10.5 feet.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To find the arc length
of a circle corresponding to a central angle
(in radians), you can use the formula:
Here, the radius
m and the angle
radians. Plugging in the values, we have:
So the arc length is approximately 10.5 m.
And there you have it! The arc length for a circle with a radius of 2 meters and a central angle of
radians is about 10.5 meters.
Now, if you’re wondering about how to ace such problems in the future, remember that converting between radians and degrees can also help you understand angles better. A full circle is 360 degrees, or
radians, so you can visualize angles in both formats!
Moreover, practice makes perfect! Keep working on different radius values and angles, and soon enough you’ll be a whiz at finding arc lengths and other circular properties. Remember to double-check your calculations, as rounding numbers can sometimes lead you astray!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium